Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (3): 839-850.
Previous Articles Next Articles
Ping Zhang1(),Jiashan Yang2(),Guijiang Qin2,*()
Received:
2021-06-26
Online:
2022-06-26
Published:
2022-05-09
Contact:
Guijiang Qin
E-mail:411451097@qq.com;syxyyjs@163.com;57841824@qq.com
Supported by:
CLC Number:
Ping Zhang,Jiashan Yang,Guijiang Qin. Oscillation of Second-Order Nonlinear Nonautonomous Delay Dynamic Equations on Time Scales[J].Acta mathematica scientia,Series A, 2022, 42(3): 839-850.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Agarwal R P , Bohner M , Li W T . Nonoscillation and Oscillation: Theory for Functional Differential Equations. New York: Marcel Dekker, 2004 |
2 | Bohner M , Peterson A . Dynamic Equations on Time Scales, An Introduction with Applications. Boston: Birkhauser, 2001 |
3 |
Sahiner Y . Oscillation of second order delay differential equations on time scales. Nonlinear Analysis: TMA, 2005, 63, e1073- e1080
doi: 10.1016/j.na.2005.01.062 |
4 | 杨甲山. 时间测度链上一类二阶Emden-Fowler型动态方程的振荡性. 应用数学学报, 2016, 39 (3): 334- 350 |
Yang J S . Oscillation for a class of second-order emden-fowler dynamic equations on time scales. Acta Mathematicae Applicatae Sinica, 2016, 39 (3): 334- 350 | |
5 | 李继猛. 时标上二阶广义Emden-Fowler型动态方程的振荡性. 浙江大学学报(理学版), 2019, 46 (3): 309- 314 |
Li J M . Oscillatorg behavier of the second-order generalized Emden-Fowler dynamic equations on time scales. Journal of Zhejiang University(Science Edition), 2019, 46 (3): 309- 314 | |
6 |
Grace S R , Bohner M , Agarwal R P . On the oscillation of second-order half-linear dynamic equations. J Difference Equ Appl, 2009, 15, 451- 460
doi: 10.1080/10236190802125371 |
7 | Hassan T S . Kamenev-type oscillation criteria for second order nonlinear dynamic equations on time scales. Appl Math Comput, 2011, 217, 5285- 5297 |
8 | 张全信, 高丽. 时间尺度上具阻尼项的二阶半线性时滞动力方程的振动准则. 中国科学:数学, 2010, 40 (7): 673- 682 |
Zhang Q X , Gao L . Oscillation criteria for second-order half-linear delay dynamic equations with damping on time scales. Sci Sin Math, 2010, 40 (7): 673- 682 | |
9 |
Zhang Q X , Gao L . Oscillation of second-order nonlinear delay dynamic equations with damping on time scales. J Appl Math Comput, 2011, 37, 145- 158
doi: 10.1007/s12190-010-0426-3 |
10 | 张全信, 高丽, 刘守华. 时间尺度上具阻尼项的二阶半线性时滞动力方程振动性的新结果. 中国科学:数学, 2013, 43 (8): 793- 806 |
Zhang Q X , Gao L , Liu S H . Oscillation criteria for second-order half-linear delay dynamic equations with damping on time scales. Sci Sin Math, 2013, 43 (8): 793- 806 | |
11 | 孙一冰, 韩振来, 孙书荣, 等. 时间尺度上一类二阶具阻尼项的半线性中立型时滞动力方程的振动性. 应用数学学报, 2013, 36 (3): 480- 494 |
Sun Y B , Han Z L , Sun S R , et al. Oscillation of a class of second order half-linear neutral delay dynamic equations with damping on time scales. Acta Mathematicae Applicatae Sinica, 2013, 36 (3): 480- 494 | |
12 | 张全信, 高丽, 刘守华. 时间尺度上具阻尼项的二阶半线性时滞动力方程的振动准则(Ⅱ). 中国科学:数学, 2011, 41 (10): 885- 896 |
Zhang Q X , Gao Li , Liu S H . Oscillation criteria for second-order half-linear delay dynamic equations with damping on time scales(Ⅱ). Sci Sin Math, 2011, 41 (10): 885- 896 | |
13 | Zhang Q X . Oscillation of second-order half-linear delay dynamic equations with damping on time scales. Journal of Computational and Applied, 2011, 235, 1180- 1188 |
14 | Li J M , Yang J S . Oscillation for second-order half-linear delay damped dynamic equations on time scales. Advances in Difference Equations, 2019, 2019, 241 |
15 | 杨甲山. 时间模上一类二阶非线性延迟动力系统的振动性分析. 应用数学学报, 2018, 41 (3): 388- 402 |
Yang J S . Oscillation analysis of second-order nonlinear delay dynamic equations on time scales. Acta Mathematicae Applicatae Sinica, 2018, 41 (3): 388- 402 | |
16 | Bohner M , Li T X . Kamenev-type criteria for nonlinear damped dynamic equations. Sci China Math, 2015, 58, 1445- 1452 |
17 | 杨甲山, 方彬. 时间测度链上一类二阶非线性时滞阻尼动力方程的振动性分析. 应用数学, 2017, 30 (1): 16- 26 |
Yang J S , Fang B . Oscillation analysis of certain second-order nonlinear delay damped dynamic equations on time scales. Mathematica Applicata, 2017, 30 (1): 16- 26 | |
18 | 张萍, 杨甲山. 时标上具非正中立项的二阶动力方程的动力学性质. 数学物理学报, 2021, 41A (1): 217- 226 |
Zhang P , Yang J S . Dynamical properties of second-order dynamic equations with a nonpositive neutral coefficient on a time scale. Acta Mathematica Scientia, 2021, 41A (1): 217- 226 | |
19 | 覃桂茳, 杨甲山. 具拟线性中立项的二阶变时滞动力方程的振动定理. 数学物理学报, 2021, 41A (5): 1492- 1503 |
Qin G J , Yang J S . Oscillation theorems of second-order variable delay dynamic equations with quasilinear neutral term. Acta Mathematica Scientia, 2021, 41A (5): 1492- 1503 | |
20 | 张萍, 杨甲山. 时标上具正负系数的三阶阻尼动力方程的振动性. 应用数学学报, 2021, 44 (5): 632- 645 |
Zhang P , Yang J S . Oscillation of third-order damped dynamic equations with positive and negative coefficients on time scales. Acta Mathematicae Applicatae Sinica, 2021, 44 (5): 632- 645 |
[1] | Ying Liu,Jianfang Gao. Oscillation Analysis of a Kind of Systems with Piecewise Continuous Arguments [J]. Acta mathematica scientia,Series A, 2022, 42(3): 826-838. |
[2] | Wenjuan Li,Huo Tang,Yuanhong Yu. Oscillation Criterion for Second Order Damped Differential Equation with a Sublinear Neutral Term [J]. Acta mathematica scientia,Series A, 2022, 42(1): 58-69. |
[3] | Zhiyu Zhang,Cheng Zhao,Yuyu Li. Oscillation of Second Order Delay Dynamic Equations with Superlinear Neutral Terms on Time Scales [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1838-1852. |
[4] | Guijiang Qin,Jiashan Yang. Oscillation Theorems of Second-Order Variable Delay Dynamic Equations with Quasilinear Neutral Term [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1492-1503. |
[5] | Zhiyu Zhang. Oscillation Criteria of Second-Order Generalized Emden-Fowler Delay Differential Equations with a Sub-Linear Neutral Term [J]. Acta mathematica scientia,Series A, 2021, 41(3): 811-826. |
[6] | Yangcong Qiu,Qiru Wang. Existence of Nonoscillatory Solutions Tending to Zero of Second-Order Neutral Dynamic Equations on Time Scales [J]. Acta mathematica scientia,Series A, 2021, 41(2): 382-387. |
[7] | Ping Zhang,Jiashan Yang. Dynamical Properties of Second-Order Dynamic Equations with a Nonpositive Neutral Coefficient on a Time Scale [J]. Acta mathematica scientia,Series A, 2021, 41(1): 217-226. |
[8] | Zhiyu Zhang,Feifei Song,Tongxing Li,Yuanhong Yu. Oscillation Criteria of Second Order Nonlinear Neutral Emden-Fowler Differential Equations with Damping [J]. Acta mathematica scientia,Series A, 2020, 40(4): 934-946. |
[9] | Zhaolin Yan,Jianfang Gao. Numerical Oscillation Analysis of the Mixed Type Impulsive Differential Equation [J]. Acta mathematica scientia,Series A, 2020, 40(4): 993-1006. |
[10] | Liping Luo,Zhenguo Luo,Yunhui Zeng. Oscillation Conditions of Certain Nonlinear Impulsive Neutral Parabolic Distributed Parameter Systems [J]. Acta mathematica scientia,Series A, 2020, 40(3): 784-795. |
[11] | Jimeng Li,Jiashan Yang. Philos-Type Criteria for Second-Order Delay Differential Equations with Nonlinear Neutral Term [J]. Acta mathematica scientia,Series A, 2020, 40(1): 169-186. |
[12] | Yanfang Mei,Youjun Wang. Three Types of Solutions for a Class of Nonlinear Schrödinger Equations [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1087-1093. |
[13] | Jimeng Li. Oscillation Analysis of Second-Order Generalized Emden-Fowler-Type Delay Differential Equations [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1041-1054. |
[14] | Zhiyu Zhang,Yuanhong Yu,Shuping Li,Shizhu Qiao. Oscillation of Second Order Nonlinear Differential Equations with Neutral Delay [J]. Acta mathematica scientia,Series A, 2019, 39(4): 797-811. |
[15] | Wenjuan Li,Shuhai Li,Yuanhong Yu. Oscillation of Second Order Nonlinear Neutral Differential Equations with Distributed Delay [J]. Acta mathematica scientia,Series A, 2019, 39(4): 812-822. |
|