1 |
Fuglede B . Commuting self-adjoint partial differential operators and a group theoretic problem. J Funct Anal, 1974, 16 (1): 101- 121
doi: 10.1016/0022-1236(74)90072-X
|
2 |
Jorgensen P E T , Pedersen S . Dense analytic subspaces in fractal L2 spaces. J Anal Math, 1998, 75 (1): 185- 228
doi: 10.1007/BF02788699
|
3 |
Laba I , Wang Y . On spectral Cantor measures. J Funct Anal, 2002, 193 (2): 409- 420
doi: 10.1006/jfan.2001.3941
|
4 |
Dutkay D E , Jorgensen P E T . Iterated function systems, Ruelle operators, and invariant projective measures. Math Comp, 2006, 75 (256): 1931- 1970
doi: 10.1090/S0025-5718-06-01861-8
|
5 |
Dutkay D E , Jorgensen P E T . Fourier frequencies in affine iterated function systems. J Funct Anal, 2007, 247 (1): 110- 137
doi: 10.1016/j.jfa.2007.03.002
|
6 |
Dutkay D E , Han D G , Sun Q Y . On the spectra of a Cantor measure. Adv Math, 2009, 221 (1): 251- 276
doi: 10.1016/j.aim.2008.12.007
|
7 |
Jorgensen P E T , Kornelson K , Shuman K . Families of spectral sets for Bernoulli convolutions. J Fourier Anal Appl, 2011, 17 (3): 431- 456
doi: 10.1007/s00041-010-9158-x
|
8 |
Li J L . Spectra of a class of self-affine measures. J Funct Anal, 2011, 260 (4): 1086- 1095
doi: 10.1016/j.jfa.2010.12.001
|
9 |
Dai X R , He X G , Lai C K . Spectral property of Cantor measures with consecutive digits. Adv Math, 2013, 242 (1): 187- 208
|
10 |
An L X , He X G , Li H X . Spectrality of infinite Bernoulli convolutions. J Funct Anal, 2015, 269 (5): 1571- 1590
doi: 10.1016/j.jfa.2015.05.008
|
11 |
Dai X R . Spectra of Cantor measures. Math Ann, 2016, 366 (3): 1621- 1647
|
12 |
Fu Y S , Wen Z X . Spectrality of infinite convolutions with three-element digit sets. Monatsh Math, 2017, 183 (3): 465- 485
doi: 10.1007/s00605-017-1026-1
|
13 |
He X G , Tang M W , Wu Z Y . Spectral structure and spectral eigienvalve problems of a class of self-similar spectral measures. J Funct Anal, 2019, 277 (10): 3688- 3722
doi: 10.1016/j.jfa.2019.05.019
|
14 |
李红光, 张鹏飞. $\mathbb{R}^n$中一类具有N元数字集的自仿测度的谱性. 数学物理学报, 2020, 40A (3): 667- 675
doi: 10.3969/j.issn.1003-3998.2020.03.013
|
|
Li H G , Zhang P F . Spectral property of some self-affine measures with N-element digits on $\mathbb{R}^n$. Acta Math Sci, 2020, 40A (3): 667- 675
doi: 10.3969/j.issn.1003-3998.2020.03.013
|
15 |
Dutkay D E , Haussermann J . Number theory problems from the harmonic analysis of a fractal. J Num Theo, 2016, 159 (1): 7- 26
|
16 |
Dutkay D E , Kraus I . Scaling of spectra of Cantor-type measures and some number theoretic considerations. Analysis Math, 2018, 44 (3): 335- 367
doi: 10.1007/s10476-018-0505-5
|
17 |
Li J L , Xing D . Multiple spectra of Bernoulli convolutions. Proc Edinb Mathe Soc, 2016, 60 (1): 187- 202
|
18 |
Wu Z Y , Zhu M . Scaling of spectra of self-similar measures with consecutive digits. J Math Anal Appl, 2018, 459 (1): 307- 319
doi: 10.1016/j.jmaa.2017.10.054
|
19 |
Wang Z M , Dong X H , Ai W H . Scaling of spectra of a class of self-similar measures on R. Mathematische Nachrichten, 2019, 292 (3): 2300- 2307
|
20 |
Hutchinson J E . Fractals and self-similarity. Indiana Univ Math J, 1981, 30 (5): 713- 747
doi: 10.1512/iumj.1981.30.30055
|
21 |
Falconer K J. Fractal Geometry, Mathematical Foundations and Applications. New York: Wiley, 1990
|
22 |
Strichartz R S . Mock Fourier series and transforms associated with certain Cantor measures. J Anal Math, 2000, 81 (1): 209- 238
doi: 10.1007/BF02788990
|