1 |
Anco S C , Silva P L D , Freire I L . A family of wave-breaking equations generalizing the Camassa-Holm and Novikov equations. J Math Phys, 2015, 56 (9): 091506
doi: 10.1063/1.4929661
|
2 |
Camassa R , Holm D . An integrable shallow water equation with peaked solitons. Phys Rev Lett, 1993, 71: 1661- 1664
doi: 10.1103/PhysRevLett.71.1661
|
3 |
Chen M T , Su W H . Local well-posedness for the Cauchy problem of 2D nonhomogeneous incompressible and non-resistive MHD equation with vacuum. Acta Mathmatica Scientia, 2021, 41A (1): 100- 125
|
4 |
Coclite G M , Holden H , Karlsen K H . Global weak solutions to a generalized hyperelastic-rod wave equation. SIAM J Math Anal, 2005, 37: 1044- 1069
doi: 10.1137/040616711
|
5 |
Coclite G M , Holden H , Karlsen K H . Well-posedness for a parabolic-elliptic systerm. Disc Cont Dyn Syst, 2005, 13: 659- 682
doi: 10.3934/dcds.2005.13.659
|
6 |
Constantin A , Ivanov R I . Dressing method for Degasperis-Procesi equation. Stud Appl Math, 2017, 138: 205- 226
doi: 10.1111/sapm.12149
|
7 |
Constantin A , Lannes D . The hydro-dynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch Ration Mech Anal, 2009, 192: 165- 186
doi: 10.1007/s00205-008-0128-2
|
8 |
Constantin A , Strauss W . Stability of peakons. Commun Pure Appl Math, 2000, 53: 603- 610
doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L
|
9 |
Degasperis A , Procesi M . Asymptotic integrability. Symmetry and Perturbation Theory, 1999, 1 (1): 23- 37
|
10 |
Fu Y , Qu C Z . Well-posedness and wave breaking of the degenerate Novikov equation. J Differential Equations, 2017, 263: 4634- 4657
doi: 10.1016/j.jde.2017.05.027
|
11 |
Grayshan K . Peakon solutions of the Novikov equation and properties of the data-to-solution map. J Math Anal Appl, 2013, 397: 515- 521
doi: 10.1016/j.jmaa.2012.08.006
|
12 |
Grayshan K , Himonas A A . Equations with peakon traveling wave solutions. Adv Dyn Syst Appl, 2013, 8: 217- 232
|
13 |
Guo Z G . On an integrable Camassa-Holm type equation with cubic nonlinearity. Nonlinear Anal, 2017, 38: 225- 232
|
14 |
Guo Z G , Li K Q , Xu C B . On a generalized Camassa-Holm type equation with $(k + 1)$-degree nonlinearities. Z Angew Math Mech, 2018, 98: 1567- 1573
doi: 10.1002/zamm.201600055
|
15 |
Guo Z G , Li X G , Yu C . Some properties of solutions to the Camassa-Holm-type equation with higher-order nonlinearities. Journal of Nonlinear Science, 2018, 28 (5): 1901- 1914
doi: 10.1007/s00332-018-9469-7
|
16 |
Himonas A A , Holliman C . The Cauchy problem for a generalized Camassa-Holm equation. Adv Differ Equ, 2014, 19: 161- 200
|
17 |
Himonas A A , Misiolek G , Ponce G , Zhou Y . Persistence properties and unique continuation of solutions of Camassa-Holm equation. Commun Math Phys, 2007, 271: 511- 522
doi: 10.1007/s00220-006-0172-4
|
18 |
Himonas A A , Thompson R . Persistence properties and unique continuation for a generalized Camassa-Holm equation. J Math Phys, 2014, 55: 091503
doi: 10.1063/1.4895572
|
19 |
Ma C C , Cao Y Q , Guo Z G . Large time behavior of momentum support for a Novikov type equation. Mathematical Physics Analysis and Geometry, 2019, 22 (4): 1- 12
|
20 |
Ma X , Yin H , Jing J . Global asymptotics toward the rerefaction wave for a paraboltc-elliptic system related to the Camassa-holm shallow water equation. Acta Mathematica Scientia, 2009, 29B (2): 371- 390
|
21 |
Mi Y S , Liu Y , Guo B L , Luo T . The Cauthy problem for a generalized Camassa-Holm equation. J Differential Equations, 2019, 266: 6733- 6770
|
22 |
Mi Y S , Mu C L . On the Cauthy problem for the modified Novikov equation with peakon solutions. J Differential Equations, 2013, 254: 961- 982
doi: 10.1016/j.jde.2012.09.016
|
23 |
Novikov V S . Generalizations of the Camassa-Holm equation. J Phys A, 2009, 42: 342002
doi: 10.1088/1751-8113/42/34/342002
|
24 |
Simon J . Compact sets in the space $L_{p}((0, T), B)$. Ann Mat Pura Appl, 1987, 146: 65- 96
|
25 |
Tu X Y , Mu C L , Qiu S Y . Continuous dependence on data under the lipschitz metric for the Rotation-Camassa-Holm equation. Acta Mathematica Scientia, 2021, 41B (1): 1- 18
|
26 |
Wei L , Qiao Z , Wang Y , Zhou S . Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete Contin Dyn Syst, 2017, 37: 1733- 1748
doi: 10.3934/dcds.2017072
|
27 |
Hao X H , Cheng Z L . The integrability of the KdV-shallow water waves equation. Acta Mathmatica Scientia, 2019, 39A (3): 451- 460
|
28 |
Xin Z P , Zhang P . On the weak solutions to a shallow water equation. Comm Pure Appl Math, 2000, 53: 1411- 1433
doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5
|
29 |
Zhou S M , Mu C L , Wang L Z . Self-similar solutions and blow-up phenomena for a two-component shallow water system. Acta Mathematica Scientia, 2013, 33B (3): 821- 829
|