Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (2): 442-453.
Previous Articles Next Articles
Mengxue Du,Fanghui Li,Zhengping Wang*()
Received:
2021-06-23
Online:
2022-04-26
Published:
2022-04-18
Contact:
Zhengping Wang
E-mail:zpwang@whut.edu.cn
Supported by:
CLC Number:
Mengxue Du, Fanghui Li, Zhengping Wang. Multiplicity of Normalized Solutions for Nonlinear Schrödinger-Poisson Equation with Hardy Potential[J].Acta mathematica scientia,Series A, 2022, 42(2): 442-453.
1 |
D'Aprile T , Mugnai D . Solitary waves for the nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Proceedings of the Royal Society of Edinburgh, 2004, 134 (5): 893- 906
doi: 10.1017/S030821050000353X |
2 |
Ruiz D . The Schrödinger-Poisson equation under the effect of a nonlinear local term. Journal of Functional Analysis, 2006, 237 (2): 655- 674
doi: 10.1016/j.jfa.2006.04.005 |
3 |
Ambrosetti A . On Schrödinger-Poisson systems. Milan Journal of Mathematics, 2008, 76 (1): 257- 274
doi: 10.1007/s00032-008-0094-z |
4 |
Bellazzini J , Jeanjean L , Luo T J . Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations. Proceedings of the London Mathematical Society, 2013, 107 (2): 303- 339
doi: 10.1112/plms/pds072 |
5 |
Li G B , Peng S J , Yan S S . Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system. Communications in Contemporary Mathematics, 2010, 12 (6): 1069- 1092
doi: 10.1142/S0219199710004068 |
6 |
Jiang Y S , Zhou H S . Multiple solutions for a Schrödinger-Poisson-Slater equation with external Coulomb potential. Science China Mathematics, 2014, 57 (6): 1163- 1174
doi: 10.1007/s11425-014-4790-6 |
7 |
Luo T J . Multiplicity of normalized solutions for a class of nonlinear Schrödinger-Poisson-Slater equations. Journal of Mathematical Analysis and Applications, 2014, 416 (1): 195- 204
doi: 10.1016/j.jmaa.2014.02.038 |
8 |
Wang Z P , Zhou H S . Sign-changing solutions for the nonlinear Schrödinger-Poisson system in ![]() ![]() |
9 |
Zeng X Y , Zhang L . Normalized solutions for Schrödinger-Poisson-Slater equations with unbounded potentials. Journal of Mathematical Analysis and Applications, 2017, 452 (1): 47- 61
doi: 10.1016/j.jmaa.2017.02.053 |
10 |
Bartsch T , De Valeriola S . Normalized solutions of nonlinear Schrödinger equations. Archiv der Mathematik, 2013, 100 (1): 75- 83
doi: 10.1007/s00013-012-0468-x |
11 |
Jeanjean L . Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Analysis, 1997, 28 (10): 1633- 1659
doi: 10.1016/S0362-546X(96)00021-1 |
12 |
Berestycki H , Lions P L . Nonlinear scalar field equations, Ⅱ Existence of infinitely many solutions. Archive for Rational Mechanics and Analysis, 1983, 82 (4): 347- 375
doi: 10.1007/BF00250556 |
[1] | Tong Zhao,Hailong Yuan,Gaihui Guo. Positive Solutions of a Predator-Prey Model with Modified Leslie-Gower Type [J]. Acta mathematica scientia,Series A, 2022, 42(1): 176-186. |
[2] | Yuan Haihua, Zhang Zhengjie, Xu Guojin. Multiple Solutions for Semilinear Elliptic Equations with Critical Exponents and Hardy Potential [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1137-1144. |
[3] | Li Qin, Yang Zuodong. Multiple Solutions for a Class of Quasilinear Nonhomogeneous Elliptic Systems with Nonlinear Boundary Conditions [J]. Acta mathematica scientia,Series A, 2016, 36(2): 307-316. |
[4] | Sun Zhaohong, Zhang Wei, He Tieshan, Gao Chuanxiang. Multiplicity Result for Homoclinic Solutions to A Class of Subquadratic Hamiltonian Systems [J]. Acta mathematica scientia,Series A, 2015, 35(2): 364-372. |
[5] | WANG Hua, Alatanchang, HUANG Jun-Jie. Multiplicity and Completeness of a Class of |Hamiltonian |Operators and Its Applications [J]. Acta mathematica scientia,Series A, 2014, 34(6): 1507-1517. |
[6] | LI Zhou-Xin, SHEN Yao-Tian. Existence of Solutions for Elliptic Equations Involving Hardy Potential under Natural Growth Condition [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1470-1478. |
[7] | TAO Qiang-Liu. Positive Solutions of Singular Fourth-order Periodic Boundary Value Problems [J]. Acta mathematica scientia,Series A, 2011, 31(3): 594-601. |
[8] | SANG Yan-Bin, WEI Zhong-Li. Existence of Solutions to a Semipositone Third-order Three-point BVP on Time Scales [J]. Acta mathematica scientia,Series A, 2011, 31(2): 455-465. |
[9] | YAO Qiang-Liu. Positive Solutions of Nonlinear Third-order Periodic Boundary Value Problems [J]. Acta mathematica scientia,Series A, 2010, 30(6): 1495-1502. |
[10] | MA Ru-Yun, GAO Cheng-Hua. Global Bifurcation of Periodic Solutions to Second Order Ordinary Differential Equations [J]. Acta mathematica scientia,Series A, 2009, 29(5): 1223-1232. |
[11] | DOU Jing-Bo, GUO Qian-Qiao. A Concentration-Compactness Principle at Infinity on the Heisenberg Group and Multiplicity of Solutions for p-sub-Laplacian Problem Involving Critical Sobolev Exponents [J]. Acta mathematica scientia,Series A, 2009, 29(4): 1033-1043. |
[12] | Chen Bin; Wang Minxing. Positive Solutions to a Three-species Predator-prey Model [J]. Acta mathematica scientia,Series A, 2008, 28(6): 1256-1266. |
[13] | Yao Qingliu. Multiple Positive Solutions to a Singular Beam Equation Fixed at Both Ends [J]. Acta mathematica scientia,Series A, 2008, 28(4): 768-778. |
[14] | Zhang Xingqiu;Zhong Qiuyan. The Existence of Multiple Positive Solutions for a Class of Singular Boundary Value Problems of Impulsive Differential Equations in a Banach Space [J]. Acta mathematica scientia,Series A, 2007, 27(4): 753-760. |
[15] | YAO Qing-Liu. Positive Solutions to Some Nonlinear Eigenvalue Problems of ThirdOrder Ordinary Differential Equations [J]. Acta mathematica scientia,Series A, 2003, 23(5): 513-519. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 182
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 121
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|