1 |
D'Aprile T , Mugnai D . Solitary waves for the nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Proceedings of the Royal Society of Edinburgh, 2004, 134 (5): 893- 906
doi: 10.1017/S030821050000353X
|
2 |
Ruiz D . The Schrödinger-Poisson equation under the effect of a nonlinear local term. Journal of Functional Analysis, 2006, 237 (2): 655- 674
doi: 10.1016/j.jfa.2006.04.005
|
3 |
Ambrosetti A . On Schrödinger-Poisson systems. Milan Journal of Mathematics, 2008, 76 (1): 257- 274
doi: 10.1007/s00032-008-0094-z
|
4 |
Bellazzini J , Jeanjean L , Luo T J . Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations. Proceedings of the London Mathematical Society, 2013, 107 (2): 303- 339
doi: 10.1112/plms/pds072
|
5 |
Li G B , Peng S J , Yan S S . Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system. Communications in Contemporary Mathematics, 2010, 12 (6): 1069- 1092
doi: 10.1142/S0219199710004068
|
6 |
Jiang Y S , Zhou H S . Multiple solutions for a Schrödinger-Poisson-Slater equation with external Coulomb potential. Science China Mathematics, 2014, 57 (6): 1163- 1174
doi: 10.1007/s11425-014-4790-6
|
7 |
Luo T J . Multiplicity of normalized solutions for a class of nonlinear Schrödinger-Poisson-Slater equations. Journal of Mathematical Analysis and Applications, 2014, 416 (1): 195- 204
doi: 10.1016/j.jmaa.2014.02.038
|
8 |
Wang Z P , Zhou H S . Sign-changing solutions for the nonlinear Schrödinger-Poisson system in $R^3$. Calculus of Variations and Partial Differential Equations, 2015, 52 (3): 927- 943
|
9 |
Zeng X Y , Zhang L . Normalized solutions for Schrödinger-Poisson-Slater equations with unbounded potentials. Journal of Mathematical Analysis and Applications, 2017, 452 (1): 47- 61
doi: 10.1016/j.jmaa.2017.02.053
|
10 |
Bartsch T , De Valeriola S . Normalized solutions of nonlinear Schrödinger equations. Archiv der Mathematik, 2013, 100 (1): 75- 83
doi: 10.1007/s00013-012-0468-x
|
11 |
Jeanjean L . Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Analysis, 1997, 28 (10): 1633- 1659
doi: 10.1016/S0362-546X(96)00021-1
|
12 |
Berestycki H , Lions P L . Nonlinear scalar field equations, Ⅱ Existence of infinitely many solutions. Archive for Rational Mechanics and Analysis, 1983, 82 (4): 347- 375
doi: 10.1007/BF00250556
|