Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (2): 379-386.
Previous Articles Next Articles
Received:
2021-06-23
Online:
2022-04-26
Published:
2022-04-18
Contact:
Tianlan Chen
E-mail:gsxsdl@163.com;chentianlan511@126.com
Supported by:
CLC Number:
Lei Duan,Tianlan Chen. Existence of Convex Solutions for a Discrete Mixed Boundary Value Problem with the Mean Curvature Operator[J].Acta mathematica scientia,Series A, 2022, 42(2): 379-386.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Bereanu C , Jebelean P , Mawhin J . Radial solutions for Neumann problems involving mean curvature operators in Euclidean and Minkowski spaces. Math Nachr, 2010, 283 (3): 379- 391
doi: 10.1002/mana.200910083 |
2 |
Bereanu C , Jebelean P , Torres P J . Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space. J Funct Anal, 2013, 265 (4): 644- 659
doi: 10.1016/j.jfa.2013.04.006 |
3 |
Ma R Y . Positive solutions for Dirichlet problems involving the mean curvature operator in Minkowski space. Monatsh Math, 2018, 187 (2): 315- 325
doi: 10.1007/s00605-017-1133-z |
4 | Dai G W . Bifurcation and positive solutions for problem with mean curvature operator in Minkowski space. Calc Var Partial Differ Equ, 2016, 55 (72): 1- 17 |
5 |
Pei M H , Wang L B . Multiplicity of positive radial solutions of a singular mean curvature equations in Minkowski space. Appl Math Lett, 2016, 60: 50- 55
doi: 10.1016/j.aml.2016.04.001 |
6 | Liang Z T , Yang Y J . Radial convex solutions of a singular Dirichlet problem with the mean curvature operator in Minkowski space. Acta Math Sci, 2019, 39B (2): 395- 402 |
7 |
Pei M H , Wang L B . Positive radial solutions of a mean curvature equation in Minkowski space with strong singularity. Proc Amer Math Soc, 2017, 145: 4423- 4430
doi: 10.1090/proc/13587 |
8 | Bereanu C , Mawhin J . Boundary value problems for second order nonlinear difference equations with discrete ϕ-Laplacian and singular ϕ. J Diff Equ Appl, 2008, 14 (10/11): 1099- 1118 |
9 |
Chen T L , Ma R Y , Liang Y W . Multiple positive solutions of second-order nonlinear difference equations with discrete singular ϕ-Laplacian. J Diff Equ Appl, 2019, 25 (1): 38- 55
doi: 10.1080/10236198.2018.1554064 |
10 |
Wang H Y . Convex solutions of boundary value problems. J Math Anal Appl, 2006, 318: 246- 252
doi: 10.1016/j.jmaa.2005.05.067 |
11 |
Kutev N D . Nontrivial solutions for the equations of Monge-Ampère type. J Math Anal Appl, 1988, 132: 424- 433
doi: 10.1016/0022-247X(88)90071-6 |
12 |
Hu S C , Wang H Y . Convex solutions of boundary value problems arising from Monge-Ampère equations. Discrete Contin Dyn Syst, 2006, 16: 705- 720
doi: 10.3934/dcds.2006.16.705 |
13 | Chen T L , Duan L . Ambrosetti-Prodi type results for a Neumann problem with a mean curvature operator in Minkowski spaces. Rocky Mountain J Math, 2020, 50 (5): 1627- 1635 |
14 | Krasnoselskii M A. Positive Solutions of Operator Equations. Noordhoff: Groningen, 1964 |
15 |
Infante G , Webb J R L . Nonzero solutions of Hammerstein integral equations with discontinuous kernels. J Math Anal Appl, 2002, 272: 30- 42
doi: 10.1016/S0022-247X(02)00125-7 |
16 |
Lan K Q . Multiple positive solutions of semilinear differential equations with singularities. J London Math Soc, 2001, 63: 690- 704
doi: 10.1112/S002461070100206X |