Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (2): 387-400.
Previous Articles Next Articles
Received:
2020-12-18
Online:
2022-04-26
Published:
2022-04-18
Supported by:
CLC Number:
Tong Tang,Cong Niu. Global Existence of Weak Solutions to the Quantum Navier-Stokes Equations[J].Acta mathematica scientia,Series A, 2022, 42(2): 387-400.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Antonelli P , Marcati P . On the finite energy weak solutions to a system in quantum fluid dynamics. Comm Math Phys, 2009, 287: 657- 686
doi: 10.1007/s00220-008-0632-0 |
2 |
Antonelli P , Marcati P . The quantum hydrodynamics system in two space dimensions. Arch Ration Mech Anal, 2012, 203: 499- 527
doi: 10.1007/s00205-011-0454-7 |
3 |
Antonelli P , Marcati P , Zheng H . Genuine hydrodynamic analysis to the 1-D QHD system: existence, dispersion and stability. Comm Math Phys, 2021,
doi: 10.1007/s00220-021-03998-z |
4 |
Antonelli P , Spirito S . Global existence of finite energy weak solutions of quantum Navier-Stokes equations. Arch Ration Mech Anal, 2017, 225: 1161- 1199
doi: 10.1007/s00205-017-1124-1 |
5 |
Antonelli P , Spirito S . On the compactness of finite energy weak solutions to the quantum Navier-Stokes equations. J Hyperbolic Differ Equa, 2018, 15: 133- 147
doi: 10.1142/S0219891618500054 |
6 |
Antonelli P , Spirito S . On the compactness of weak solutions to the Navier-Stokes-Korteweg equations for capillary fluids. Nonlinear Anal, 2019, 187: 110- 124
doi: 10.1016/j.na.2019.03.020 |
7 |
Bian D F , Yao L , Zhu C J . Vanishing capillarity limit of the compressible fluid models of Korteweg type to the Navier-Stokes equations. SIAM J Math Anal, 2014, 46: 1633- 1650
doi: 10.1137/130942231 |
8 |
Bresch D , Desjardins B , Lin C K . On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Comm Partial Differential Equations, 2003, 28: 843- 868
doi: 10.1081/PDE-120020499 |
9 |
Bresch D , Desjardins B . On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids. J Math Pures Appl, 2007, 87: 57- 90
doi: 10.1016/j.matpur.2006.11.001 |
10 | Bresch D , Jabin P E . Global existence of weak solutions for compressible Navier-Stokes equations: thermodynamically unstable pressure and anisotropic viscous stress tensor. Annals Math, 2018, 188: 577- 684 |
11 |
Brull S , Méhats F . Derivation of viscous correction terms for the isothermal quantum Euler model. ZAMM Z Angew Math Mech, 2010, 90: 219- 230
doi: 10.1002/zamm.200900297 |
12 |
Ducomet B , Nečasová Š , Vasseur A . On global motions of a compressible barotropic and selfgravitating gas with density-dependent viscosities. Z Angew Math Phys, 2010, 61: 479- 491
doi: 10.1007/s00033-009-0035-x |
13 |
Ducomet B , Nečasová Š , Vasseur A . On spherically symmetric motions of a viscous compressible barotropic and selfgravitating gas. J Math Fluid Mech, 2011, 13: 191- 211
doi: 10.1007/s00021-009-0010-5 |
14 |
Donatelli D , Feireisl E , Marcati P . Well/ill posedness for the Euler-Korteweg-Poisson system and related problems. Comm Partial Differential Equations, 2015, 40: 1314- 1335
doi: 10.1080/03605302.2014.972517 |
15 |
Feireisl E . Compressible Navier-Stokes equations with a non-monotone pressure law. J Differential Equations, 2002, 184: 97- 108
doi: 10.1006/jdeq.2001.4137 |
16 |
Feireisl E . On weak-strong uniqueness for the compressible Navier-Stokes system with non-monotone pressure law. Comm Partial Differential Equations, 2019, 44: 271- 278
doi: 10.1080/03605302.2018.1543319 |
17 |
Gisclon M , Lacroix-Violet I . About the barotropic compressible quantum Navier-Stokes equations. Nonlinear Anal, 2015, 128: 106- 121
doi: 10.1016/j.na.2015.07.006 |
18 |
Germain P , LeFloch P . Finite energy method for compressible fluids: the Navier-Stokes-Korteweg model. Comm Pure Appl Math, 2016, 69: 3- 61
doi: 10.1002/cpa.21622 |
19 |
Guo Z H , Jiu Q S , Xin Z P . Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients. SIAM J Math Anal, 2008, 39: 1402- 1427
doi: 10.1137/070680333 |
20 |
Haspot B . Global strong solution for the Korteweg system with quantum pressure in dimension N ≥ 2. Math Ann, 2017, 367: 667- 700
doi: 10.1007/s00208-016-1391-4 |
21 |
Jüngel A . Effective velocity in compressible Navier-Stokes equations with third-order derivatives. Nonlinear Anal, 2011, 74: 2813- 2818
doi: 10.1016/j.na.2011.01.002 |
22 |
Jüngel A . Global weak solutions to compressible Navier-Stokes equations for quantum fluids. SIAM J Math Anal, 2010, 42: 1025- 1045
doi: 10.1137/090776068 |
23 |
Jüngel A , Li H L . Quantum Euler-Poisson systems: global existence and exponential decay. Quart Appl Math, 2004, 62: 569- 600
doi: 10.1090/qam/2086047 |
24 | Jüngel A, Milisic J P. Quantum Navier-Stokes equations//Günther M, Bartel A, Brunk M, et al. Progress in Industrial Mathematics at ECMI 2010. Berlin: Springer, 2012: 427-439 |
25 |
Kotschote M . Strong solutions for a compressible fluid model of Korteweg type. Ann Inst H Poincaré Anal Non Linéaire, 2008, 25: 679- 696
doi: 10.1016/j.anihpc.2007.03.005 |
26 |
Li H L , Li J , Xin Z P . Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations. Comm Math Phys, 2008, 281: 401- 444
doi: 10.1007/s00220-008-0495-4 |
27 |
Li H L , Marcati P . Existence and asymptotic behavior of multi-dimensional quantum hydrodynamic model for semiconductors. Comm Math Phys, 2004, 245: 215- 247
doi: 10.1007/s00220-003-1001-7 |
28 | Li J, Xin Z P. Global existence of weak solutions to the barotropic compressible Navier-Stokes flows with degenerate viscosities. 2015, arXiv: 1504.06826 |
29 |
Liu T P , Xin Z P , Yang T . Vacuum states for compressible flow. Discrete Contin Dynam Systems, 1998, 4: 1- 32
doi: 10.3934/dcds.1998.4.1 |
30 | Ladyzhenskaya O, Solonnikov V A, Uraltseva N N. Linear and quasilinear equations of parabolic type. Translated from the Russian by Smith S. Translations of Mathematical Monographs, Vol 23. Providence, RI: American Mathematical Society, 1968 |
31 |
Mellet A , Vasseur A . On the barotropic compressible Navier-Stokes equations. Comm Partial Differential Equations, 2007, 32: 431- 452
doi: 10.1080/03605300600857079 |
32 |
Tan Z , Zhang X , Wang H Q . Asymptotic behavior of Navier-Stokes-Korteweg with friction in R3. Discrete Contin Dyn Syst, 2014, 34: 2243- 2259
doi: 10.3934/dcds.2014.34.2243 |
33 |
Tang T , Zhang Z J . A remark on the global existence of weak solutions to the compressible quantum Navier-Stokes equations. Nonlinear Anal Real World Appl, 2019, 45: 255- 261
doi: 10.1016/j.nonrwa.2018.07.009 |
34 |
Vasseur A , Yu C . Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations. Invent Math, 2016, 206: 935- 974
doi: 10.1007/s00222-016-0666-4 |
35 |
Vasseur A , Yu C . Global weak solutions to the compressible quantum Navier-Stokes equations with damping. SIAM J Math Anal, 2016, 48: 1489- 1511
doi: 10.1137/15M1013730 |
36 |
Wang W J , Yao L . Vanishing viscosity limit to rarefaction waves for the full compressible fluid models of Korteweg type. Commun Pure Appl Anal, 2014, 13: 2331- 2350
doi: 10.3934/cpaa.2014.13.2331 |
37 |
Zhang X , Tan Z . Decay estimates of the non-isentropic compressible fluid models of Korteweg type in R3. Commun Math Sci, 2014, 12: 1437- 1456
doi: 10.4310/CMS.2014.v12.n8.a4 |
[1] | Luo Kexin, Lai Shaoyong. Global Weak Solutions to a High-Order Camass-Holm Type Equation [J]. Acta mathematica scientia,Series A, 2022, 42(2): 427-441. |
[2] | Shi Shijie, Liu Zhengrong, Zhao Hui. Boundedness and Stabilization of a Chemotaxis Model Describing Tumor Invasion with Signal-Dependent Motility [J]. Acta mathematica scientia,Series A, 2022, 42(2): 502-519. |
[3] | Zaiyun Zhang,Zhenhai Liu,Youjun Deng. Global Existence and General Decay for a Nonlinear Viscoelastic Equation with Time-Varying Delay and Velocity-Dependent Material Density [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1684-1704. |
[4] | Yuge Du,Shuying Tian. Existence and Blow-Up of a Parabolic Equation with Logarithmic Nonlinearity [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1816-1829. |
[5] | Zhe Jia,Zuodong Yang. Global Boundedness in a Chemotaxis-Haptotaxis Model with Nonlinear Diffusion and Signal Production [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1382-1395. |
[6] | Daoguo Zhou. Regularity Criteria in Lorentz Spaces for the Three Dimensional Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1396-1404. |
[7] | Weilin Zou,Yuanchun Ren,Meipin Xiao. Regularizing Effect of L1 Interplay Between Coefficients in Nonlinear Degenerate Elliptic Equations [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1405-1414. |
[8] | Jiao Luo,Qian Qi,Hong Luo. Weak Solutions to Higher-Order Anisotropic Cahn-Hilliard-Navier-Stokes Systems [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1599-1611. |
[9] | Juan Wang,Zixia Yuan. Global Existence and Convergence of Solutions to a Chemotactic Model with Logarithmic Sensitivity and Mixed Boundary Conditions [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1646-1669. |
[10] | Xiaoli Han. Multiple Pertubations to a Quasilinear Schrödinger Equation [J]. Acta mathematica scientia,Series A, 2020, 40(4): 869-881. |
[11] | Jie Wu,Hongxia Lin. The Global Solution and Asymptotic Behavior of Parabolic-Parabolic Keller-Segel Type Model [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1102-1114. |
[12] | Penghong Zhong,Ganshan Yang,Xuan Ma. Global Existence and Self-Similar Blowup of Landau-Lifshitz-Gilbert Equation on Hyperbolic Space [J]. Acta mathematica scientia,Series A, 2019, 39(3): 461-474. |
[13] | Kai Li,Han Yang,Fan Wang. Study on Weak Solution and Strong Solution of Incompressible MHD Equations with Damping in Three-Dimensional Systems [J]. Acta mathematica scientia,Series A, 2019, 39(3): 518-528. |
[14] | Zhang Shengui. Infinitely Many Solutions for a Bi-Nonlocal Problem Involving p(x)-Laplacian-Like Operator [J]. Acta mathematica scientia,Series A, 2018, 38(3): 514-526. |
[15] | Xing Chao, Ren Mengzhang, Luo Hong. The Existence of Global Weak Solutions to Thermohaline Circulation Equations [J]. Acta mathematica scientia,Series A, 2018, 38(2): 284-290. |