Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (6): 1937-1949.
Previous Articles Next Articles
Jiang Li,Guijie Lan,Shuwen Zhang,Chunjin Wei*()
Received:
2019-12-28
Online:
2021-12-26
Published:
2021-12-02
Contact:
Chunjin Wei
E-mail:chunjinwei92@163.com
Supported by:
CLC Number:
Jiang Li,Guijie Lan,Shuwen Zhang,Chunjin Wei. Dynamics Analysis of a Stochastic Glucose-Insulin Model[J].Acta mathematica scientia,Series A, 2021, 41(6): 1937-1949.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | 王林, 黄亚明. National institute of diabetes and digestive and kidney diseases. 中华内科杂志, 2010, (8): 695- 695 |
Wang L , Huang Y M . National institute of diabetes and digestive and kidney diseases. Chinese Journal of Internal Medicine, 2010, (8): 695- 695 | |
2 |
Tfayli H , Arslanian S . Pathophysiology of type 2 in youth: the evolving chameleon. Arq Bras Endocrinol, 2009, 53 (2): 165- 174
doi: 10.1590/S0004-27302009000200008 |
3 |
Bolie V W . Coefficients of normal blood glucose regulation. J Appl Physiol, 1961, 16 (5): 783- 790
doi: 10.1152/jappl.1961.16.5.783 |
4 |
Ackerman E , Rosevear J W , Mcguckin W F . A mathematical model of the glucose-tolerance test. Phys Med Biol, 1964, 9 (2): 203- 213
doi: 10.1088/0031-9155/9/2/307 |
5 |
Ackerman E , Gatewood L C , Rosevear J W , et al. Model studies of blood-glucose regulation. Bull Math Biophys, 1965, 27 (1): 21- 37
doi: 10.1007/BF02476465 |
6 | Sulston K W , Ireland W P , Praught J C . Hormonal effects on glucose regulation. Atl Electron J Math, 2006, 1 (1): 31- 46 |
7 | Divanovi H, Muli D, Padalo A, et al. Effects of electrical stimulation as a new method of treating diabetes on animal models: Review// Badnjevic A, et al. CMBEBIH. Singapore: Springer, 2017: 253-258 |
8 |
Wang H , Li J , Yang K . Mathematical modeling and qualitative analysis of insulin therapies. Math Biosci, 2007, 210 (1): 17- 33
doi: 10.1016/j.mbs.2007.05.008 |
9 |
Li J , Kuang Y . Analysis of a model of the glucose-insulin regulatory system with two delays. Siam J Appl Math, 2007, 67 (3): 757- 776
doi: 10.1137/050634001 |
10 |
Topp B , Promislow K , Devries G , et al. A Model of β-cell mass, insulin, and glucose kinetics: pathways to diabetes. J Theor Bio, 2000, 206 (4): 605- 619
doi: 10.1006/jtbi.2000.2150 |
11 | Hernandez R D, Lyles D J, Rubin D B, et al. A model of β-cell mass, insulin, glucose and receptor dynamics with applications to diabetes[R]. Technical Report, Biometric Department, MTBI Cornell University, 2001 |
12 |
Gallenberger M , Castell WZ . Dynamics of glucose and insulin concentration connected to the β-cell cycle: model development and analysis. Theor Biol Med Model, 2012, 9 (1): 46- 46
doi: 10.1186/1742-4682-9-46 |
13 |
Bellazzi R , Nucci G , Cobelli C . The subcutaneous route to insulin-dependent diabetes therapy. IEEE Eng Med Biol, 2001, 20 (1): 54- 64
doi: 10.1109/51.897828 |
14 |
Boutayeb A , Chetouani A . A critical review of mathematical models and data used in diabetology. BioMed Eng OnLine, 2006, 5 (1): 43
doi: 10.1186/1475-925X-5-43 |
15 |
Kansal A R . Modeling approaches to type 2 diabetes. Diabetes Technol The, 2004, 6 (1): 39- 47
doi: 10.1089/152091504322783396 |
16 |
Landersdorfer C , Jusko W . Pharmacokinetic/pharmacodynamic modelling in diabetes mellitus. Clin Pharmacokinet, 2008, 47 (7): 417- 448
doi: 10.2165/00003088-200847070-00001 |
17 | Makroglou A , Li J , Yang K . Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: an overview. Appl Numer Math, 2006, 56 (3/4): 559- 573 |
18 |
Parker R S , Doyle F , Peppas N A . The intravenous route to blood glucose control. IEEE Eng Med Biol, 2001, 20 (1): 65- 73
doi: 10.1109/51.897829 |
19 |
Pattaranit R , Berg H . Mathematical models of energy homeostasis. J R Soc Interface, 2008, 5 (27): 1119- 1153
doi: 10.1098/rsif.2008.0216 |
20 |
Li J , Yang K , Mason C C . Modeling the glucose-insulin regulatory system and ultradian insulin secretory oscillations with two explicit time delays. J Theor Biol, 2006, 242 (3): 722- 735
doi: 10.1016/j.jtbi.2006.04.002 |
21 |
Huang M , Li J , Song X , et al. Modeling impulsive injections of insulin: towards artificial pancreas. SIAM J Appl Math, 2012, 72 (5): 1524- 1548
doi: 10.1137/110860306 |
22 |
Liu L , Wang F , Lu H , et al. Effects of noise exposure on systemic and tissue-level markers of glucose homeostasis and insulin resistance in male mice. Environ Health Perspect, 2016, 124, 1390- 1398
doi: 10.1289/EHP162 |
23 |
Yu X , Yuan S , Zhang T . The effects of toxin-producing phytoplankton and environmental fluctuations on the planktonic blooms. Nonlinear Dyn, 2018, 91, 1653- 1668
doi: 10.1007/s11071-017-3971-6 |
24 |
Nguyen D , Yin G , Zhu C . Long-term analysis of a stochastic SIRS model with general incidence rates. Siam J Appl Math, 2020, 80 (2): 814- 838
doi: 10.1137/19M1246973 |
25 |
Liu M , Fan M . Permanence of stochastic lotka-volterra systems. J Nonl Sci, 2017, 27 (2): 425- 452
doi: 10.1007/s00332-016-9337-2 |
26 | Khas'Miniskii R. Stochastic Stability of Differential Equations. Alphen aan den Rijn: Sijthoff and Noordhoff, 1980 |
27 |
Higham Desmond J . An algorithmic introduction to numerical simulations of stochastic differentila equations. Siam Rev, 2001, 43, 525- 546
doi: 10.1137/S0036144500378302 |
28 | Liu M , Bai C . Optimal harvesting of a stochastic mutualism model with regime-switching. Appl Math Comput, 2020, 373, 125040 |
29 |
Ji W , Wang Z , Hu G . Stationary distribution of a stochastic hybrid phytoplankton model with allelopathy. Adv Differ Equ, 2020, 2020, 632
doi: 10.1186/s13662-020-03088-9 |
30 | Wang Z , Deng M , Liu M . Stationary distribution of a stochastic ratio-dependent predator-prey system with regime-switching. Chaos Solitons Fract, 2020, 2020, 110462 |
31 |
Yu X , Yuan S , Zhang T . Persistence and ergodicity of a stochastic single species model with Allee effect under regime switching. Commun Nonlinear Sci, 2018, 59, 359- 374
doi: 10.1016/j.cnsns.2017.11.028 |
32 |
Zhao Y , Yuan S , Zhang T . The stationary distribution and ergodicity of a stochastic phytoplankton allelopathy model under regime switching. Commun Nonlinear Sci, 2016, 37, 131- 142
doi: 10.1016/j.cnsns.2016.01.013 |
33 |
Xu C , Yuan S , Zhang T . Average break-even concentration in a simple chemostat model with telegraph noise. Nonlinear Anal Hybr, 2018, 29, 373- 382
doi: 10.1016/j.nahs.2018.03.007 |
34 |
Lan G , Lin Z , Wei C , et al. A stochastic SIRS epidemic model with non-monotone incidence rate under regime-switching. J Franklin Inst, 2019, 356 (16): 9844- 9866
doi: 10.1016/j.jfranklin.2019.09.009 |
35 |
Zhao D , Liu H . Coexistence in a two species chemostat model with Markov switchings. Appl Math Lett, 2019, 94, 266- 271
doi: 10.1016/j.aml.2019.03.005 |
[1] | Lixiang Feng,Defen Wang. Global Stability of an Epidemic Model with Quarantine and Incomplete Treatment [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1235-1248. |
[2] | Yonghui Zhou. Global Stability of the Nonmonotone Critical Traveling Waves for Reaction Diffusion Equations [J]. Acta mathematica scientia,Series A, 2020, 40(4): 983-992. |
[3] | Xiaojie Jing, Aimin Zhao, Guirong Liu. Global Stability of a Measles Epidemic Model with Partial Immunity and Environmental Transmission [J]. Acta mathematica scientia,Series A, 2019, 39(4): 909-917. |
[4] | Guijie Lan,Yingjie Fu,Chunjin Wei,Shuwen Zhang. Stationary Distribution and Periodic Solution for Stochastic Predator-Prey Systems with Holling-Type Ⅲ Functional Response [J]. Acta mathematica scientia,Series A, 2018, 38(5): 984-1000. |
[5] | Wei Aiju, Zhang Xinjian, Wang Junyi, Li Kezan. Dynamics Analysis of an Ebola Epidemic Model [J]. Acta mathematica scientia,Series A, 2017, 37(3): 577-592. |
[6] | YE Hui, CAI Dong-Han. Global Attractivity in a Periodic Nicholson's Blowflies Model [J]. Acta mathematica scientia,Series A, 2013, 33(6): 1013-1021. |
[7] | LI Yu-Huan, ZHOU Jun, MU Chun-Lai. Stability Analysis for a Predator-Prey System with Nonlocal Delayed Reaction-diffusion Equations [J]. Acta mathematica scientia,Series A, 2012, 32(3): 475-488. |
[8] | CUI Cheng, WANG Xiao, GAO Fei, LIU An-Ping. Global Stability of Periodic Solution and Almost Periodic Solution of Price Cooperating Model with Time Lag [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1718-1729. |
[9] |
Wu Shiliang ;Li Wantong.
Stability and Traveling Fronts in Lotka-Volterra Cooperation Model with Stage Structure [J]. Acta mathematica scientia,Series A, 2008, 28(3): 454-464. |
[10] | Wang Yuquan; Liu Laifu. On the Dynamics of a Food Chain with Monod-Haldane Functional Response [J]. Acta mathematica scientia,Series A, 2007, 27(1): 79-089. |
[11] | Wang Yuquan ;Jing Zhujun. Global Qualitative Analysis of a Food Chain Model [J]. Acta mathematica scientia,Series A, 2006, 26(3): 410-420. |
[12] | CENG Zhi-Gang, LIAO Xiao-Cuan. Global Stability for Neural Networks with Unbouned Time Varying Delays [J]. Acta mathematica scientia,Series A, 2005, 25(5): 621-626. |
[13] | YUAN San-Ling, MA Zhi-En, HAN Mao-An. Global Stability on an SIS Epidemic Model with Time Delays [J]. Acta mathematica scientia,Series A, 2005, 25(3): 349-356. |
[14] | SONG Xin-Yu, XIAO Yan-Ni, CHEN Lan-Sun. Stability and Hopf Bifurcation of an Eco epidemiological Model with Delays [J]. Acta mathematica scientia,Series A, 2005, 25(1): 57-66. |
|