Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (6): 1950-1968.
Previous Articles Next Articles
Dandan Sun1,*(),Yingke Li1(
),Zhidong Teng2,Tailei Zhang3
Received:
2020-07-03
Online:
2021-12-26
Published:
2021-12-02
Contact:
Dandan Sun
E-mail:dandan_1990@126.com;307129154@qq.com
Supported by:
CLC Number:
Dandan Sun,Yingke Li,Zhidong Teng,Tailei Zhang. Analysis of the Stability for Measles Epidemic Model with Age-Structured[J].Acta mathematica scientia,Series A, 2021, 41(6): 1950-1968.
1 | 马知恩, 周义仓, 王稳地, 靳帧. 传染病动力学的数学模型与研究. 北京: 科学出版社, 2004 |
Ma Z E , Zhou Y C , Wang W D , Jin Z . Mathematical Modeling and Research on the Dynamics of Infectious Diseases. Beijing: Science Press, 2004 | |
2 |
王亮, 孙建兰. 麻疹流行病学研究现状. 上海医药, 2011, 32A (8): 394- 396
doi: 10.3969/j.issn.1006-1533.2011.08.010 |
Wang L , Sun J L . Status of epidemiology of measles. Shanghai Medical and Pharmaceutical Journal, 2011, 32A (8): 394- 396
doi: 10.3969/j.issn.1006-1533.2011.08.010 |
|
3 | 姜翠翠, 宋丽娟, 王开发. 考虑部分免疫和潜伏期的麻疹传染病模型的稳定性分析. 生物数学学报, 2017, 32A (1): 57- 64 |
Jiang C C , Song L J , Wang K F . Stability analysis of a measles epidemic model with partial immunity and latency. J Biomath, 2017, 32A (1): 57- 64 | |
4 | 佘连兵. 一类具有接种的麻疹模型的动力学分析. 西南师范大学学报, 2015, 40A (7): 12- 16 |
She L B . On dynamical analysis of a measles model with vaccination. J Southwest Norm Univ, 2015, 40A (7): 12- 16 | |
5 |
靖晓洁, 赵爱民, 刘桂荣. 考虑部分免疫和环境传播的麻疹传染病模型的全局稳定性. 数学物理学报, 2019, 39A (4): 909- 917
doi: 10.3969/j.issn.1003-3998.2019.04.018 |
Jing X J , Zhao A M , Liu A M . Global stability of a measles epidemic model with partial immunity and environmental transmission. Acta Math Sci, 2019, 39A (4): 909- 917
doi: 10.3969/j.issn.1003-3998.2019.04.018 |
|
6 |
Huang J C , Ruan S G , Wu X , Zhou X L . Seasonal transmission dynamics of measles in China. Theor Biosci, 2018, 137 (2): 185- 195
doi: 10.1007/s12064-018-0271-8 |
7 | Zhou L H , Wang Y , Xiao Y Y , Li M Y . Global dynamics of a discrete age-structured SIR epidemic model with applications to measles vaccination strategies. Math Biosci, 2018, 308, 27- 37 |
8 | Hale J K. Functional Differential Equations. Berlin: Springer, 1971 |
9 | Webb G F. Theory of Nonlinear Age-dependent Population Dynamics. New York: Marcel Dekker, 1985 |
10 | Hale J K , Waltman P . Persistence in infinite-dimensinal systems. Math, 1989, 20 (2): 388- 396 |
11 | Adams R A , Fournier J J . Sobolev Spaces. New York: Academic Press, 2003 |
12 | Smith H M, Thieme H R. Dynamical Systems and Population Persistence. Providence, RI: Ameri Math Soc, 2011 |
13 | Diekmann O , Heesterbeek J A , Metz J A . On the definition and the couputation of the basic reproduction ratioin models for infectious diseases in heterogeneous populations. J Math Biol, 1990, 28 (4): 365- 382 |
14 | Li Y Y , Nguyen L , Wang B . Comparison principles and Lipschitz regularity for some nonlinear degenerate elliptic equations. Calc Var Partial Diff, 2018, 57 (4): 1- 29 |
15 | Zhao X. Dynamical Systems in Population Biology. New York: Springer-Verlag, 2003 |
16 | Sigdel R P , McCluskey C . Global stability for an SEI model of infectious disease with immigration. Appl Math Comput, 2014, 243 (2): 684- 689 |
17 | LaSalle G P. The Stability of Dynamical Systems. Phladelphia: SIAM, 1976 |
18 | 马超, 郝利新, 马静. 中国2010年麻疹流行病学特征与消除麻疹进展. 中国疫苗和免疫, 2011, 17A (3): 242- 248 |
Ma C , Hao L X , Ma J . Measles epidemiological characteristics and progress of measles elimination in China, 2010. Chinese Journal of Vaccines and Immunization, 2011, 17A (3): 242- 248 | |
19 |
Duan X C , Yuan S L , Qiu Z P , Ma J L . Global stability of an epidemic model with ages of vaccination and latency. Comput Math Appl, 2014, 68, 288- 308
doi: 10.1016/j.camwa.2014.06.002 |
20 |
Li Y K , Teng Z D , Hu C , Ge Q . Global stability of an epidemic model with age-dependent vaccination, latent and relapse. Chaos Solit Fract, 2017, 105, 195- 207
doi: 10.1016/j.chaos.2017.10.027 |
21 |
陈庚. 一类具有年龄结构的传染病模型的持续性质. 高校应用数学学报, 2007, 22A (3): 253- 262
doi: 10.3969/j.issn.1000-4424.2007.03.001 |
Chen G . Disease persistence for a kind of age-structured epidemic models. Appl Math Ser A, 2007, 22A (3): 253- 262
doi: 10.3969/j.issn.1000-4424.2007.03.001 |
[1] | Lixiang Feng,Defen Wang. Global Stability of an Epidemic Model with Quarantine and Incomplete Treatment [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1235-1248. |
[2] | Xiaojie Jing, Aimin Zhao, Guirong Liu. Global Stability of a Measles Epidemic Model with Partial Immunity and Environmental Transmission [J]. Acta mathematica scientia,Series A, 2019, 39(4): 909-917. |
[3] | Zhang Liping, Zhao Yu, Yuan Sanling. Threshold Dynamical Behaviors of a Stochastic SIS Epidemic Model with Nonlinear Incidence Rate [J]. Acta mathematica scientia,Series A, 2018, 38(1): 197-208. |
[4] | Wei Aiju, Zhang Xinjian, Wang Junyi, Li Kezan. Dynamics Analysis of an Ebola Epidemic Model [J]. Acta mathematica scientia,Series A, 2017, 37(3): 577-592. |
[5] | Gui Zhanji; Jia Jing; Ge Weigao. Global Stability of Single-species Diffusion Models with Time Delay [J]. Acta mathematica scientia,Series A, 2007, 27(3): 496-505. |
[6] | LOU Jie, MA Zhi-En. Stability of Some Epidemic Models |with Passive Immunity [J]. Acta mathematica scientia,Series A, 2003, 23(3): 357-368. |
[7] |
WEN Xian-Zhang.
The Uniform Persistence of PredatorPrey Systems with Delays [J]. Acta mathematica scientia,Series A, 2003, 23(1): 96-105. |
|