Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (5): 1333-1346.
Previous Articles Next Articles
Received:
2020-04-17
Online:
2021-10-26
Published:
2021-10-08
Contact:
Hui Yang
E-mail:mathyh@126.com;yzhan@jlu.edu.cn
Supported by:
CLC Number:
Hui Yang,Yuzhu Han. Blow-Up Properties of Solutions to a Class of Parabolic Type Kirchhoff Equations[J].Acta mathematica scientia,Series A, 2021, 41(5): 1333-1346.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Brezis H . Functional Analysis. Sobolev Spaces and Partial Differential Equations. New York: Springer, 2010 |
2 | Chipot M , Valente V , Caffarelli G V . Remarks on a nonlocal problem involving the Dirichlet energy. Rend Semin Mat U Pad, 2003, 110, 199- 220 |
3 | Chipot M , Savitska T . Nonlocal p-Laplace equations depending on the $ L.p $ norm of the Gradient. Adv Differential Equ, 2014, 19, 997- 1020 |
4 |
D'Ancona P , Shibata Y . On global solvability of non-linear viscoelastic equation in the analytic category. Math Methods Appl Sci, 1994, 17, 477- 489
doi: 10.1002/mma.1670170605 |
5 |
D'Ancona P , Spagnolo S . Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent Math, 1992, 108, 247- 262
doi: 10.1007/BF02100605 |
6 |
Fu Y , Xiang M . Existence of solutions for parabolic equations of Kirchhoff type involving variable exponent. Appl Anal, 2016, 95, 524- 544
doi: 10.1080/00036811.2015.1022153 |
7 | Gazzola F , Weth T . Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level. Differ Integral Equ, 2005, 18, 961- 990 |
8 |
Ghisi M , Gobbino M . Hyperbolic-parabolic singular perturbation for middly degenerate Kirchhoff equations: time-decay estimates. J Differ Equ, 2008, 245, 2979- 3007
doi: 10.1016/j.jde.2008.04.017 |
9 | Han Y . Finite time blowup for a semilinear pseudo-parabolic equation with general nonlinearity. Appl Math Lett, 2020, 99, 1- 7 |
10 |
Han Y , Gao W , Sun Z , Li H . Upper and lower bounds of blow-up time to a parabolic type Kirchhoff equation with arbitrary initial energy. Comput Math Appl, 2018, 76, 2477- 2483
doi: 10.1016/j.camwa.2018.08.043 |
11 |
Han Y , Li Q . Threshold results for the existence of global and blow-up solutions to Kirchhoff equations with arbitrary initial energy. Comput Math Appl, 2018, 75, 3283- 3297
doi: 10.1016/j.camwa.2018.01.047 |
12 |
Levine H A . Some nonexistence and stability theorems for solutions of formally parabolic equations of the form $ Pu_t = -Au+F(u) $. Arch Ration Mech Anal, 1973, 51, 371- 386
doi: 10.1007/BF00263041 |
13 |
Li J , Han Y . Global existence and finite time blow-up of solutions to a nonlocal $ p $-Laplace equation. Math Model Anal, 2019, 24, 195- 217
doi: 10.3846/mma.2019.014 |
14 |
Liao M , Gao W . Blow-up phenomena for a nonlocal p-Laplace equation with Neumann boundary conditions. Arch Math, 2017, 108, 313- 324
doi: 10.1007/s00013-016-0986-z |
15 |
Liu Y , Zhao J . On potential wells and applications to semilinear hyperbolic equations and parabolic equations. Nonlinear Anal TMA, 2006, 64, 2665- 2687
doi: 10.1016/j.na.2005.09.011 |
16 | Nishihara K . On a global solution of some quasilinear hyperbolic equation. Tokyo J Math, 1984, 7, 437- 459 |
17 |
Payne L E , Sattinger D H . Saddle points and instability of nonlinear hyperbolic equtions. Israel J Math, 1975, 22, 273- 303
doi: 10.1007/BF02761595 |
18 |
Philippin G A , Proytcheva V . Some remarks on the asymptotic behaviour of the solutions of a class of parabolic problems. Math Methods Appl Sci, 2006, 29, 297- 307
doi: 10.1002/mma.679 |
19 |
Xu R . Asymptotic behavior and blow up of solutions for semilinear parabolic equations at critical energy level. Math Comput Simulat, 2009, 80, 808- 813
doi: 10.1016/j.matcom.2009.08.028 |
20 |
Xu R , Su J . Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations. J Funct Anal, 2013, 264, 2732- 2763
doi: 10.1016/j.jfa.2013.03.010 |
21 | Zheng S , MChipot M . Asymptotic behavior of solutions to nonlinear parabolic equations with nonlocal terms. Asymptotic Anal, 2005, 45, 301- 312 |
|