Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (5): 1323-1332.
Previous Articles Next Articles
Jingran He(),Helin Guo(),Wenqing Wang*
Received:
2020-10-14
Online:
2021-10-26
Published:
2021-10-08
Contact:
Wenqing Wang
E-mail:462147945@qq.com;qfguohelin@126.com
Supported by:
CLC Number:
Jingran He,Helin Guo,Wenqing Wang. A p-Laplace Eigenvalue Problem with Coercive Potentials[J].Acta mathematica scientia,Series A, 2021, 41(5): 1323-1332.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Damascelli L , Pacella F , Ramaswamy M . Symmetry of Ground States of p-Laplace Equations via the Moving Plane Method. Arch Ration Mech Anal, 1999, 148 (4): 291- 308
doi: 10.1007/s002050050163 |
2 |
Dewel G , Huepe C , Metens S , et al. Decay rates in attractive Bose-Einstein condensates. Phys Rev Lett, 1999, 82, 1616- 1619
doi: 10.1103/PhysRevLett.82.1616 |
3 |
Gu L J , Zeng X Y , Zhou H S . Eigenvalue problem for a p-Laplacian equation with trapping potentials. Nonlinear Anal, 2017, 148, 212- 227
doi: 10.1016/j.na.2016.10.002 |
4 |
Guo Y J , Seiringer R . On the mass concentration for Bose-Einstein condensates with attractive interactions. Lett Math Phys, 2014, 104 (2): 141- 156
doi: 10.1007/s11005-013-0667-9 |
5 |
Guo Y J , Wang Z Q , Zeng X Y , Zhou H S . Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials. Nonlinearity, 2018, 31 (3): 957- 979
doi: 10.1088/1361-6544/aa99a8 |
6 |
Guo Y J , Zeng X Y , Zhou H S . Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials. Ann Inst H Poincaré Anal Non Linéaire, 2016, 33 (3): 809- 828
doi: 10.1016/j.anihpc.2015.01.005 |
7 |
Guo Y J , Zeng X Y , Zhou H S . Blow-up solutions for two coupled Gross-Pitaevskii equations with attractive interactions. Discrete Contin Dyn Syst, 2017, 37 (7): 3749- 3786
doi: 10.3934/dcds.2017159 |
8 |
Guo H L , Zhou H S . A constrained variational problem arising in attractive Bose-Einstein condensate with ellipse-shaped potential. Appl Math Lett, 2019, 87, 35- 41
doi: 10.1016/j.aml.2018.07.023 |
9 | Gidas B , Ni W M , Nirenberg L . Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}.n$. Mathematical Analysis and Applications Part A, Adv in Math Suppl Stud, 1981, 7, 369- 402 |
10 |
Guedda M , Veron L . Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal, 1989, 13 (8): 879- 902
doi: 10.1016/0362-546X(89)90020-5 |
11 |
谷龙江, 孙志禹, 曾小雨. 一类约束变分问题极小元的存在性及其集中行为. 数学物理学报, 2017, 37 (3): 510- 518
doi: 10.3969/j.issn.1003-3998.2017.03.010 |
Gu L J , Sun Z Y , Zeng X Y . The Existence of minimizers for a class of constrained variational problem with its concentration behavior. Acta Math Sci, 2017, 37 (3): 510- 518
doi: 10.3969/j.issn.1003-3998.2017.03.010 |
|
12 |
Li Y , Ni W M . Radial symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}.n$. Comm Partial Differential Equations, 1993, 18, 1043- 1054
doi: 10.1080/03605309308820960 |
13 |
Li G B , Yan S S . Eigenvalue problems for quasilinear elliptic-equations on $\mathbb{R}.n$. Comm Partial Differential Equations, 1989, 14, 1291- 1314
doi: 10.1080/03605308908820654 |
14 | Serrin J , Tang M X . Uniqueness of ground states for quasilinear elliptic equations. Indiana Univ Math J, 2000, 49, 897- 923 |
[1] | Wangjin Yao. Existence and Multiplicity of Solutions for a Coupled System of Impulsive Differential Equations via Variational Method [J]. Acta mathematica scientia,Series A, 2020, 40(3): 705-716. |
[2] | Hongli Qian,Xiaotao Huang. A Symmetry Result for a Class of p-Laplace Involving Baouendi-Grushin Operators via Constrained Minimization Method [J]. Acta mathematica scientia,Series A, 2020, 40(3): 725-734. |
[3] | WANG Hua, Alatanchang, HUANG Jun-Jie. Multiplicity and Completeness of a Class of |Hamiltonian |Operators and Its Applications [J]. Acta mathematica scientia,Series A, 2014, 34(6): 1507-1517. |
[4] |
LI Yu-Huan, MI Yong-Sheng, MU Chun-Lai.
PROPERTIES OF POSITIVE SOLUTIONS FOR A NONLOCAL NONLINEAR DIFFUSION EQUATION WITH NONLOCAL NONLINEAR BOUNDARY CONDITION [J]. Acta mathematica scientia,Series A, 2014, 34(3): 748-758. |
[5] | WANG Hua, Alatancang, HUANG Jun-jie. Algebraic Index of Eigenvalues of Infinite-dimensional Hamiltonian Operators [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1266-1272. |
[6] | LI Yong-Xiang, YANG He. Two-Parameter Nonresonance Condition Described by Ellipse for Fourth-order Boundary Value Problems [J]. Acta mathematica scientia,Series A, 2010, 30(1): 239-244. |
[7] | KONG Ling-Hua, ZHAO Li-Zhong, ZHENG Shi-Ning. Asymptotic Analysis to Parabolic Equations with Absorptions and Coupled Localized Sources [J]. Acta mathematica scientia,Series A, 2010, 30(1): 267-277. |
[8] | GUAN Li, ZHANG Zhong-Zhi, XIE Dong-Xiu. Optimal Approximation Problem of Antireflexive Matrices under the Spectral Restriction [J]. Acta mathematica scientia,Series A, 2009, 29(2): 316-323. |
[9] | Zhang Guoqing; Liu Sanyang. On a Class of Elliptic Equation with Critical Potential and Indefinite Weights in R2 [J]. Acta mathematica scientia,Series A, 2008, 28(5): 929-936. |
[10] |
Lin Lishan;Li Yongqing.
Existence of Solutions of Nonlinear Eigenvalue Problems Laplacian and Weights [J]. Acta mathematica scientia,Series A, 2007, 27(6): 996-1005. |
[11] | Chen Qiong; Xiang Zhaoyin; Mu Chunlai. Blow-up Profiles to a Nonlocal Reaction-diffusion System [J]. Acta mathematica scientia,Series A, 2007, 27(3): 420-427. |
[12] | Meng Chunjun; Hu Xiyan. The Inverse Eigenvalue Problem of Hamiltonian Matrices [J]. Acta mathematica scientia,Series A, 2007, 27(3): 442-448. |
[13] | YAO Qing-Liu. Positive Solutions to Some Nonlinear Eigenvalue Problems of ThirdOrder Ordinary Differential Equations [J]. Acta mathematica scientia,Series A, 2003, 23(5): 513-519. |
|