Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (4): 1181-1191.
Previous Articles Next Articles
Received:
2020-06-08
Online:
2021-08-26
Published:
2021-08-09
Supported by:
CLC Number:
Zerong He,Mengjie Han. Optimal Control of Initial Distributions in a Hierarchical Size-Structured Population System with Delay[J].Acta mathematica scientia,Series A, 2021, 41(4): 1181-1191.
1 |
Lomnicki A . Individual differences between animals and the natural regulation of their numbers. Journal of Animal Ecology, 1978, 47 (2): 461- 475
doi: 10.2307/3794 |
2 |
Dewsbury D A . Dominance rank, copulatory behavior, and differential reproduction. The Quarterly Review of Biology, 1982, 57 (2): 135- 159
doi: 10.1086/412672 |
3 |
Gurney W S , Nisbet R M . Ecological stability and social hierarchy. Theoretical Population Biology, 1979, 16, 48- 80
doi: 10.1016/0040-5809(79)90006-6 |
4 |
Cushing J M . The dynamics of hierarchical age-structured populations. J Math Biol, 1994, 32, 705- 729
doi: 10.1007/BF00163023 |
5 |
Henson S M , Cushing J M . Hierarchical models of intra-specific competition: scramble versus contest. J Math Biol, 1996, 34, 755- 772
doi: 10.1007/BF00161518 |
6 | Ackleh A S , Deng K . Monotone approximation for a hierarchical age-structured population model. Dynamics of Continuous, Discrete and Impulsive Systems, 2005, 12, 203- 214 |
7 | Cushing J M , Li J . Oscilations caused by cannibalism in a size-structured population model. Canadian Applied Mathematics Quarterly, 1995, 3 (2): 155- 172 |
8 |
Calsina À , Saldaña J . Asymptotic behaviour of a model of hierarchically structured population dynamics. J Math Biol, 1997, 35, 967- 987
doi: 10.1007/s002850050085 |
9 |
Kraev E A . Existence and uniqueness for height structured hierarchical population models. Natural Resources Modeling, 2001, 14 (1): 45- 70
doi: 10.1111/j.1939-7445.2001.tb00050.x |
10 |
Ackleh A S , Hu S . A quasilinear hierarchical size-structured model: Well-posedness and approximation. Appl Math Optim, 2005, 51, 35- 59
doi: 10.1007/s00245-004-0806-2 |
11 |
Calsina À , Saldaña J . Basic theory for a class of models of hierarchically structured population dynamics with distributed states in the recruitment. Mathematical Models and Methods in Applied Sciences, 2006, 16 (10): 1695- 1722
doi: 10.1142/S0218202506001686 |
12 | Ackleh A S , Deng K , Thibodeaux J J . A monotone approximation for a size-structured population model with a generalized environment. Journal of Biological Systems, 2007, 1 (4): 305- 319 |
13 |
Shen J , Shu C-W , Zhang M . A high order WENO scheme for a hierarchical size-structured population model. J Sci Comput, 2007, 33, 279- 291
doi: 10.1007/s10915-007-9152-x |
14 |
Farkas J Z , Hagen T . Asymptotic analysis of a size-structured cannibalism modfel with infinite dimensional environmental feedback. Communications on Pure and Applied Analysis, 2009, 8 (6): 1825- 1839
doi: 10.3934/cpaa.2009.8.1825 |
15 |
Jang S R-J , Cushing J M . A discrete hierarchical model of intra-specific competition. J Math Anal Appl, 2003, 280, 102- 122
doi: 10.1016/S0022-247X(03)00050-7 |
16 |
何泽荣, 张智强, 裘哲勇. 一类非线性年龄等级结构种群模型的数值解法. 数学物理学报, 2020, 40A (2): 515- 526
doi: 10.3969/j.issn.1003-3998.2020.02.022 |
He Z , Zhang Z , Qiu Z . Numerical method of a nonlinear hierarchical age-structured population model. Acta Mathematica Scientia, 2020, 40A (2): 515- 526
doi: 10.3969/j.issn.1003-3998.2020.02.022 |
|
17 |
He Z-R , Ni D , Wang S-P . Optimal harvesting of a hierarchical age-structured population system. International Journal of Biomathematics, 2019, 12 (8): 1950091
doi: 10.1142/S1793524519500918 |
18 | 何泽荣, 周楠, 韩梦杰. 一类非线性年龄等级结构种群系统模型的可控性. 高校应用数学学报, 2020, 35 (2): 191- 198 |
He Z , Zhou N , Han M . Controllability of a hierarchical age-structured population system model. Appl Math J Chinese Univ, 2020, 35 (2): 191- 198 | |
19 | 何泽荣, 陈怀, 谢强军. 带有离散个体等级结构的种群系统的控制问题. 系统科学与数学, 2020, 40 (3): 410- 422 |
He Z , Chen H , Xie Q . Control problems of a discrete hierarchical population system. J Sys Math Scis, 2020, 40 (3): 410- 422 | |
20 | 韩梦杰, 何泽荣, 周楠. 具有时滞的尺度等级结构种群模型. 应用泛函分析学报, 2019, 21 (4): 319- 324 |
Han M , He Z , Zhou N . A Hierarchical size-structured population model with delay. J Appl Funct Anal, 2019, 21 (4): 319- 324 | |
21 | Barbu V. Mathematical Methods in Optimization of Differential Systems. Dordrecht: Kluwer Academic Publishers, 1994 |
22 |
Barbu V , Iannelli M . Optimal control of population dynamics. J Optim Theo Appl, 1999, 102, 1- 14
doi: 10.1023/A:1021865709529 |
[1] |
Qionglin Liu,Yinghui Tang.
Analysis of ![]() ![]() ![]() |
[2] | Lan Xu. Another Proof of Variational Principle for Sub-Additive Potentials [J]. Acta mathematica scientia,Series A, 2020, 40(4): 977-982. |
[3] | Le Luo,Yinghui Tang. System Capacity Optimization Design and Optimal Control Policy (N*, D*) for M/G/1 Queue with p-Entering Discipline and Min(N, D, V)-Policy [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1228-1246. |
[4] | Maoning Tang,Qingxin Meng. Linear-Quadratic Optimal Control Problems for Mean-Field Backward Stochastic Differential Equations with Jumps [J]. Acta mathematica scientia,Series A, 2019, 39(3): 620-637. |
[5] | Hongxue Song,Yunfeng Wei. Multiple Solutions for Quasilinear Nonhomogeneous Elliptic Equations with a Parameter [J]. Acta mathematica scientia,Series A, 2019, 39(2): 286-296. |
[6] | Ruijing Li. A General Maximum Principle for Forward-Backward Stochastic Control Systems of Mean-Field Type [J]. Acta mathematica scientia,Series A, 2019, 39(1): 143-155. |
[7] | Quyu Pan,Yinghui Tang. Analysis of M/G/1 Repairable Queueing System and Optimal Control Policy with a Replaceable Repair Facility Under Delay Min(N, D)-Policy [J]. Acta mathematica scientia,Series A, 2018, 38(5): 1014-1031. |
[8] | Zhang Chunguo, Liu Yubiao, Liu Weiwei. Boundary Optimal Control for the Timoshenko Beam [J]. Acta mathematica scientia,Series A, 2018, 38(3): 454-466. |
[9] | Gao Lijun, Tang Yinghui. M/G/1 Repairable Queueing System and Optimal Control Policy with Min(N,D)-Policy [J]. Acta mathematica scientia,Series A, 2017, 37(2): 352-365. |
[10] | He Zerong, Yang Lizhi. A Weighted Population Model with Size-Structure: Stability and Optimal Harvesting [J]. Acta mathematica scientia,Series A, 2016, 36(3): 584-600. |
[11] | HE Ze-Rong, LIU Rong, LIU Li-Li. Optimal Harvest Rate for a Population System Modeling Periodic Environment and Body Size [J]. Acta mathematica scientia,Series A, 2014, 34(3): 684-690. |
[12] | ZHOU Shu-Qing, HU Zhen-Hua, PENG Dong-Yun. Global Regularity for Very Weak Solutions to Obstacle Promlems Corresponding to a Class of A-Harmonic Equations [J]. Acta mathematica scientia,Series A, 2014, 34(1): 27-38. |
[13] | PENG Yan-Fang, WANG Ji-Xiu. Multiplicity of Solutions for a Singular Equation [J]. Acta mathematica scientia,Series A, 2013, 33(4): 766-776. |
[14] | WU Li-Meng, NI Ming-Kang, LIU Hai-Bo. Internal Transition Layer Solution of Singularly Perturbed Optimal Control Problem [J]. Acta mathematica scientia,Series A, 2013, 33(2): 206-215. |
[15] | LIU Yan, HE Ze-Rong. Optimal Harvesting of a Size-structured Predator-prey Model [J]. Acta mathematica scientia,Series A, 2012, 32(1): 90-102. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 101
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 59
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|