Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (1): 91-99.
Previous Articles Next Articles
Received:
2020-01-07
Online:
2021-02-26
Published:
2021-01-29
Supported by:
CLC Number:
Lianhong Guo. Research on the Inviscid Limit for Boussinesq Equations[J].Acta mathematica scientia,Series A, 2021, 41(1): 91-99.
1 | Constantin P , Foias C . Navier-Stokes Equations. Chicago: University of Chicago Press, 1988 |
2 | Pedlosky J . Geophysical Fluid Dynamics. New York: Springer-Verlag, 1987 |
3 | Majda A . Introduction to PDEs and Waves for the Atmosphere and Ocean. New York: Courant Institute of Mathematical Sciences, 2003 |
4 | Cushman-Roisin B , Jean-Marie B . Introduction to Geophysical Fluid Dynamics, Physical and Numerical Aspects. New York: Academic Press, 2011 |
5 |
Rajagopal K R , Ruzicka M , Srinivasa A R . On the Oberbeck-Boussinesq approximation. Mathematical Models and Methods in Applied Sciences, 1996, 6 (8): 1157- 1167
doi: 10.1142/S0218202596000481 |
6 |
Chae D . Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv Math, 2006, 203: 497- 513
doi: 10.1016/j.aim.2005.05.001 |
7 |
Hou T Y , Li C . Global well-posedness of the viscous Boussinesq equations. Discrete Contin Dyn Syst, 2005, 12 (1): 1- 12
doi: 10.3934/dcds.2005.12.1 |
8 |
Berselli L C , Spirito S . On the vanishing viscosity limit for the Navier-Stokes equations under slip boundary conditions in general domains. Commun Math Phys, 2012, 316: 171- 198
doi: 10.1007/s00220-012-1581-1 |
9 |
Iftimie D , Planas G . Inviscid limits for the Navier-Stokes equations with Navier friction boundary conditions. Nonlinearity, 2006, 19 (4): 899- 918
doi: 10.1088/0951-7715/19/4/007 |
10 |
Xiao Y L , Xin Z P . On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition. Comm Pure Appl Math, 2007, 60: 1027- 1055
doi: 10.1002/cpa.20187 |
11 |
Xiao Y L , Xin Z P , Wu J H . Vanishing viscosity limit for the 3D magnetohydrodynamic system with a slip boundary condition. J Funct Anal, 2009, 257: 3375- 3394
doi: 10.1016/j.jfa.2009.09.010 |
12 |
Xiao Y L , Xin Z P . Remarks on vanishing viscosity limits for 3D Navier-Stokes equations with a slip boundary condition. Chin Ann Math, 2011, 32: 321- 332
doi: 10.1007/s11401-011-0649-0 |
13 | Berselli L C , Spirito S . On the Boussinesq system:regularity criteria and singular limits. Methods Appl Anal, 2011, 18: 391- 496 |
14 |
Jiang S , Zhang J W , Zhao J N . Boundary-layer effects for the 2-D Boussinesq equations with vanishing diffusivity limit in the half plane. Journal of Differential Equations, 2011, 250 (10): 3907- 3936
doi: 10.1016/j.jde.2011.01.002 |
15 |
Berselli L C , Spirito S . An elementary approach to the inviscid limits for the 3D Navier-Stokes equations with slip boundary conditions and applications to the 3D Boussinesq equations. Nonlinear Differ Equ Appl, 2014, 21: 149- 166
doi: 10.1007/s00030-013-0242-1 |
16 |
Wang J , Xie F . Zero dissipation limit and stability of boundary layers for the heat conductive Boussinesq equations in a bounded domain. Proc Roy Soc Edinburgh Sect A, 2015, 145 (3): 611- 637
doi: 10.1017/S0308210513000875 |
17 | Li L R , Wang K , Hong M L . The Asymptotic limit for the 3D Boussinesq system. Chinese Quarrterly Journal of Mathematics, 2016, 31 (1): 51- 59 |
18 |
Li H P , Xu Z H , Zhu X L . The vanishing diffusivity limit for the 2-D Boussinesq equations with boundary effct. Nonlinear Analysis, 2016, 133: 144- 160
doi: 10.1016/j.na.2015.12.004 |
19 |
Zhang Z P . Vanishing diffusivity limit for the 3D heat-conductive Boussinesq equations with a slip boundary condition. J Math Anal Appl, 2018, 460 (1): 47- 57
doi: 10.1016/j.jmaa.2017.11.045 |
20 | Navier C L M . Memoire sur les loir du mouvement des fluids. Memoires de l'Academie Royale des Sciences de l'Institut de France, 1823, 6: 389- 440 |
21 |
Beirão da Veiga H , Crispo F . Sharp inviscid limit results under Navier type boundary conditions:An ![]() ![]() doi: 10.1007/s00021-009-0295-4 |
22 |
Beirão da Veiga H , Crispo F . Concerning the ![]() ![]() ![]() ![]() doi: 10.1007/s00021-009-0012-3 |
23 |
Chen P F , Xiao Y H , Zhang H . Vanishing viscosity limit for the 3D nonhomogeneous incompressible Navier-Stokes equations with a slip boundary condition. Math Meth Appl Sci, 2017, 40: 5925- 5932
doi: 10.1002/mma.4443 |
24 |
Constantin P , Doering C R . Infinite Prandtl number convection. J Stat Phys, 1999, 94: 159- 172
doi: 10.1023/A:1004511312885 |
[1] | Hua Qiu,Changping Xie,Shaomei Fang. Remarks on Regularity Criteria for 3D Generalized MHD Equations and Boussinesq Equations [J]. Acta mathematica scientia,Series A, 2019, 39(2): 316-328. |
[2] | Chen Pengfei. The Inviscid and Non-Resistive Limit for 3D Nonhomogeneous Incompressible MHD Equations with a Slip Boundary Condition [J]. Acta mathematica scientia,Series A, 2018, 38(1): 83-95. |
[3] | SHEN Ji-Hong, ZHANG Ming-You, YANG Yan-Bing, LIU Bo-Wei, XU Run-Zhang. Global Well-posedness of Cauchy Problem for Damped Multidimensional Generalized Boussinesq Equations [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1173-1187. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 136
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 72
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|