Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (1): 100-125.
Previous Articles Next Articles
Mingtao Chen1,Wenhuo Su2,*(),Aibin Zang2
Received:
2019-12-12
Online:
2021-02-26
Published:
2021-01-29
Contact:
Wenhuo Su
E-mail:suwenhuo@jxycu.edu.cn
Supported by:
CLC Number:
Mingtao Chen,Wenhuo Su,Aibin Zang. Local well-Posedness for the Cauchy Problem of 2D Nonhomogeneous Incompressible and Non-Resistive MHD Equations with Vacuum[J].Acta mathematica scientia,Series A, 2021, 41(1): 100-125.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Antontsev S N, Kazhikov A V, Monakhov V N. Boundary Value Problems in Mechanics of Nonhomogeneous Fluids. Amsterdam: North-Holland, 1990 |
2 | Bian D , Guo B . Well-posedness in critical spaces for the full compressible MHD equations. Acta Math Sci, 2013, 33B (4): 273- 296 |
3 | Cabannes H . Theoretical Magnetofluiddynamics. New York: Academic Press, 1970 |
4 | Chandrasekhar S . Hydrodynamic and Hydromagnetic Stability. Oxford: Clarendon Press, 1961 |
5 |
Chemin J Y , McCormick D S , Robinson J C , Rodrigo J L . Local existence for the non-resistive MHD equations in Besov spaces. Adv Math, 2016, 286: 1- 31
doi: 10.1016/j.aim.2015.09.004 |
6 |
Chen M , Zang A . On classical solutions to the Cauchy problem of the 2D compressible non-resistive MHD equations with vacuum. Nonlinearity, 2017, 30: 3637- 3675
doi: 10.1088/1361-6544/aa7e97 |
7 |
Chen Q , Tan Z , Wang Y . Strong solutions to the incompressible magnetohydrodynamic equations. Math Meth Appl Sci, 2011, 34: 94- 107
doi: 10.1002/mma.1338 |
8 |
Cho Y , Kim H . Unique solvability for the density-dependent Navier-Stokes equations. Nonlinear Anal, 2004, 59: 465- 489
doi: 10.1016/j.na.2004.07.020 |
9 |
Choe H , Kim H . Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids. Comm Partial Differential Equations, 2003, 28: 1183- 1201
doi: 10.1081/PDE-120021191 |
10 |
Craig W , Huang X , Wang Y . Global wellposedness for the 3D inhomogeneous incompressible Navier-Stokes equations. J Math Fluid Mech, 2013, 15: 747- 758
doi: 10.1007/s00021-013-0133-6 |
11 | Stein Elias M . Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton, NJ: Princeton University Press, 1993 |
12 |
Fefferman C L , McCormick D S , Robinson J C , Rodrigo J L . Higher order commutator estimates and local existence for the non-resistive MHD equations and relatedmodels. Journal of Functional Analysis, 2014, 267: 1035- 1056
doi: 10.1016/j.jfa.2014.03.021 |
13 |
Fefferman C L , McCormick D S , Robinson J C , Rodrigo J L . Local existence for the non-resistive MHD equations in nearly optimal Sobolev spaces. Arch Rational Mech Anal, 2017, 223: 677- 691
doi: 10.1007/s00205-016-1042-7 |
14 |
Freidberg J P . Ideal magnetohydrodynamic theory of magnetic fusion systems. Rev Modern Phys, 1982, 54: 801- 902
doi: 10.1103/RevModPhys.54.801 |
15 | Galdi G P . An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Steady-State Problem. New York: Springer, 2011 |
16 | Huang X D, Li J. Global well-posedness of classical solutions to the Cauchy problem of two-dimensional baratropic compressible Navier-Stokes system with vacuum and large initial data. 2012, https://arxiv.org/abs/1207.3746 |
17 |
Huang X , Wang Y . Global strong solution to the 2D nonhomogeneous incompressible MHD system. J Differential Equations, 2013, 254: 511- 517
doi: 10.1016/j.jde.2012.08.029 |
18 |
Huang X , Wang Y . Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity. J Differential Equations, 2015, 259: 1606- 1627
doi: 10.1016/j.jde.2015.03.008 |
19 | Jiu Q , Niu D . Mathematical results related to a two-dimensional magnetohydrodynamic equations. Acta Math Sci, 2006, 26B (4): 744- 756 |
20 | Kazhikov A V . Resolution of boundary value problems for nonhomogeneous viscous fluids. Dokl Akad Nauk, 1974, 216: 1008- 1010 |
21 |
Kim H . A blow-up criterion for the nonhomogeneous nonhomogeneous incompressible Navier-Stokes equations. SIAM J Math Anal, 2006, 37: 1417- 1434
doi: 10.1137/S0036141004442197 |
22 | Kulikovskiy A G , Lyubimov G A . Magnetohydrodynamics. Reading, MA: Addison-Wesley, 1965 |
23 |
Li J , Liang Z . On local classical solutions to the cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations with vacuum. J Math Pures Appl, 2014, 102: 640- 671
doi: 10.1016/j.matpur.2014.02.001 |
24 | Liang Z . Local strong solution and blow-up criterion for the 2D nonhomogeneous incompressible fluids. J Differential Equations, 2015, 7: 2633- 2654 |
25 |
Lin F , Xu L , Zhang P . Global small solutions to 2D incompresible MHD system. J Differ Equa, 2015, 259: 5440- 5485
doi: 10.1016/j.jde.2015.06.034 |
26 | Lions P L . Mathematical Topics in Fluid Mechanics, Vol I: Incompressible Models. Oxford: Oxford University Press, 1996 |
27 | Lü B, Xu Z, Zhong X. On local strong solutions to the Cauchy problem of two-dimensional density-dependent Magnetohydrodynamic equations with vacuum. 2015, https://arxiv.org/abs/1506.02156 |
28 |
Lü B , Xu Z , Zhong X . Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent Magnetohydrodynamic equations with vacuum. J Math Pures Appl, 2017, 108 (1): 41- 62
doi: 10.1016/j.matpur.2016.10.009 |
29 | Lü B, Shi X, Zhong X. Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent Navier-Stokes equations with vacuum. 2015, https://arxiv.org/abs/1506.03143 |
30 | Pan R, Zhou Y, Zhu Y. Global classical solutions of 3D viscous MHD system without magnetic diffusion on periodic boxes. 2015, https://arxiv.org/abs/1503.05644 |
31 |
Ren X , Wu J , Xiang Z , Zhang Z . Global existence and decay of smooth solution for the 2D MHD equations without magnetic diffusion. J Funct Anal, 2014, 267: 503- 541
doi: 10.1016/j.jfa.2014.04.020 |
32 | Si X, Ye X. Global well-posedness for the incompressible MHD equations with density-dependent viscosity and resistivity coefficients. Z Angew Math Phys, 2016, 67, Article number: 126 |
33 |
Zhang J . Global well-posedness for the incompressible Navier-Stokes equations with density-dependent viscosity coefficient. J Differ Equa, 2015, 259: 1722- 1742
doi: 10.1016/j.jde.2015.03.011 |
34 |
Zhou Y , Fan J . A regularity criterion for the 2D MHD system with zero magnetic diffusivity. J Math Anal Appl, 2011, 378: 169- 172
doi: 10.1016/j.jmaa.2011.01.014 |
[1] | Qingling Zhang,Ying Ba. The Perturbed Riemann Problem for the Pressureless Euler Equations with a Flocking Dissipation [J]. Acta mathematica scientia,Series A, 2020, 40(1): 49-62. |
[2] | LIU Jian, LIAN Ru-Xu, QIAN Mao-Fu. Global Existence of Solution to Bipolar Navier-Stokes-Poisson System [J]. Acta mathematica scientia,Series A, 2014, 34(4): 960-976. |
[3] | YE Yu-Lin, DOU Chang-Sheng, JIU Quan-Sen. LOCAL WELL-POSEDNESS TO THE CAUCHY PROBLEM OF THE 3-D COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DENSITY-DEPENDENT VISCOSITY [J]. Acta mathematica scientia,Series A, 2014, 34(3): 851-871. |
[4] | ZHANG Ting-Ting. The Stability of the Riemann Solutions for Aw-Rascle Model [J]. Acta mathematica scientia,Series A, 2013, 33(2): 230-241. |
[5] |
Zhang Ting.
Discontinuous Solutions of the Navier-Stokes Equations for Compressible Flow with Density-Dependent Viscosity [J]. Acta mathematica scientia,Series A, 2008, 28(2): 214-221. |
[6] | Zhu Qingguo. The Concept of Group and Local Invariant Solution of Vacuum Einstein Equation [J]. Acta mathematica scientia,Series A, 1998, 18(S1): 35-43. |
|