Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (1): 149-165.
Previous Articles Next Articles
Xuanxuan Xi,Mimi Hou,Xianfeng Zhou*()
Received:
2019-11-19
Online:
2021-02-26
Published:
2021-01-29
Contact:
Xianfeng Zhou
E-mail:zhouxf@ahu.edu.cn
Supported by:
CLC Number:
Xuanxuan Xi,Mimi Hou,Xianfeng Zhou. Invariance Sets and Well-Posedness for the Weak Solution of Non-Autonomous Caputo Fractional Evolution Equation[J].Acta mathematica scientia,Series A, 2021, 41(1): 149-165.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Podlubny I . Fractional Differential Equations. New York: Academic Press, 1993 |
2 | Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier Science B V, 2006 |
3 | Zhou Y. Basic Theory of Fractional Differential Equations. Singapore: World Scientific, 2014 |
4 |
Elsayed E M , Harikrishnan S , Kanagarajan K . On the existence and stability of boundary value problem for differential equation with Hilfer-Katugampola fractional derivative. Acta Math Sci, 2019, 39: 1568- 1578
doi: 10.1007/s10473-019-0608-5 |
5 |
Migorski S , Zeng S D . Mixed variational inequalities driven by fractional evolutionary equations. Acta Math Sci, 2019, 39: 461- 468
doi: 10.1007/s10473-019-0211-9 |
6 |
Cao J X , Song G J , Wang J , Shi Q , Sun S . Blow-up and global solutions for a class of time fractional nonlinear reaction-diffusion equation with weakly spatial source. Appl Math Lett, 2019, 91: 201- 206
doi: 10.1016/j.aml.2018.12.020 |
7 |
Guo S , Mei L Q , Zhang Z Q , Chen J , He Y , Li Y . Finite difference/Hermite-Galerkin spectral method for multi-dimensional time-fractional nonlinear reaction-diffusion equation in unbounded domains. Appl Math Model, 2019, 70: 246- 263
doi: 10.1016/j.apm.2019.01.018 |
8 |
Taki-Eddine O , Abdelfatah B . A priori estimates for weak solution for a time-fractional nonlinear reaction-diffusion equations with an integral condition. Chaos Soliton Fract, 2017, 103: 79- 89
doi: 10.1016/j.chaos.2017.05.035 |
9 |
Mu J , Ahmad B , Huang S . Existence and regularity of solutions to time-fractional diffusion equations. Comput Math Appl, 2017, 73: 985- 996
doi: 10.1016/j.camwa.2016.04.039 |
10 |
Zhou Y , Shangerganesh L , Manimaran J , Debbouche A . A class of time-fractional reaction-diffusion equation with nonlocal boundary condition. Math Meth Appl Sci, 2018, 41: 2987- 2999
doi: 10.1002/mma.4796 |
11 |
Kubica A , Yamamoto M . Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients. Fract Calc Appl Anal, 2018, 21: 276- 311
doi: 10.1515/fca-2018-0018 |
12 | Dehestani H , Ordokhani Y , Razzaghi M . Fractional-order Legendre-Laguerre functions and their applications in fractional partial differential equations. Appl Math Comput, 2018, 336: 433- 453 |
13 |
Ayouch C , Essoufi E , Tilioua M . Global weak solutions to a spatio-temporal fractional Landau-Lifshitz-Bloch equation. Comput Math Appl, 2019, 77: 1347- 1357
doi: 10.1016/j.camwa.2018.11.016 |
14 | Lions J L . Equations Différentielles Opérationnelles et Problèmes aux Limits. Heidelberg: Springer, 1961 |
15 | Thomaschewski S. Form methods for autonomous and non-autonomous Cauchy problems[D]. Universität Ulm, 2003 |
16 | Fackler S. J.L.Lions' problem concerning maximal regularity of equations governed by non-autonomous forms. Ann I H Poincare-An, 2017, 34: 699-709 |
17 |
Achache M , Ouhabaz E M . Lions' maximal regularity problem with $H^{\frac{1}{2}}$-regularity. J Differential Equations, 2019, 266: 3654- 3678
doi: 10.1016/j.jde.2018.09.015 |
18 |
Arendt W , Dier D . Rection-diffusion systems governed by non-autonomous forms. J Differential Equations, 2018, 264: 6362- 6379
doi: 10.1016/j.jde.2018.01.035 |
19 |
Ouhabaz E M . Invariance of closed convex sets and domination criteria for semigroups. Potential Anal, 1996, 5: 611- 625
doi: 10.1007/BF00275797 |
20 |
Arendt W , Dier D , Ouhabaz E M . Invariance of convex sets for non-autonomous evolution equations governed by forms. J London Math Soc, 2014, 89: 903- 916
doi: 10.1112/jlms/jdt082 |
21 |
Dier D . Non-autonomous forms and invariance. Math Nachr, 2019, 292: 603- 614
doi: 10.1002/mana.201700090 |
22 |
Zhou Y , Peng L . Weak solutions of the time-fractional Navier-Stokes equations and optimal control. Comput Math Appl, 2017, 73: 1016- 1027
doi: 10.1016/j.camwa.2016.07.007 |
23 |
Agrawal O P . Fractional variational calculus in terms of Riesz fractional derivatives. J Phys A, 2007, 40: 6287- 6303
doi: 10.1088/1751-8113/40/24/003 |
24 | Lawrence C E. Partial Differential Equations. Providence, RI: American Mathematical Society, 1997 |
25 | Temam R. Navier Stokes Equations: Theory and Numerical Analysis. Amsterdam: North-Holland, 1977 |
26 |
Liu S , Wu X , Zhou X F , Wei J . Asymptotical stability of Riemann-Liouville fractional nonlinear systems. Nonlinear Dyn, 2016, 86: 65- 71
doi: 10.1007/s11071-016-2872-4 |
27 |
Ye H , Gao J , Ding Y . A generalized Gronwall inequality and its application to a fractional differential equation. J Math Anal Appl, 2007, 328: 1075- 1081
doi: 10.1016/j.jmaa.2006.05.061 |
28 | Hille E, Phillips R S. Functional Analysis and Semi-groups. Providence, RI: American Mathematical Society, 1957 |
29 |
Arendt W , Monniaux S . Maximal regularity for non-autonomous Robin boundary conditions. Math Nachr, 2016, 289: 1325- 1340
doi: 10.1002/mana.201400319 |
[1] | Jiao Luo,Qian Qi,Hong Luo. Weak Solutions to Higher-Order Anisotropic Cahn-Hilliard-Navier-Stokes Systems [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1599-1611. |
[2] | Yuxia Tong,Xinru Wang,Jiantao Gu. Lϕ-Type Estimates for Very Weak Solutions of A-Harmonic Equation in Orlicz Spaces [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1461-1480. |
[3] | Yanan Zhang,Shuo Yan,Yuxia Tong. Gradient Estimates for Weak Solutions to Non-Homogeneous A-Harmonic Equations Under Natural Growth [J]. Acta mathematica scientia,Series A, 2020, 40(2): 379-394. |
[4] | Limin Zhang,Haiyan Xu,Chunhua Jin. Global Existence and Stability to a Prey-Taxis Model with Porous Medium Diffusion and Indirect Signal Production [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1381-1404. |
[5] | Kai Li,Han Yang,Fan Wang. Study on Weak Solution and Strong Solution of Incompressible MHD Equations with Damping in Three-Dimensional Systems [J]. Acta mathematica scientia,Series A, 2019, 39(3): 518-528. |
[6] | Bo Zhu,Lishan Liu. Existence and Uniqueness of the Mild Solutions for a Class of Fractional Non-Autonomous Evolution Equations with Impulses [J]. Acta mathematica scientia,Series A, 2019, 39(1): 105-113. |
[7] | Zhang Shengui. Infinitely Many Solutions for a Bi-Nonlocal Problem Involving p(x)-Laplacian-Like Operator [J]. Acta mathematica scientia,Series A, 2018, 38(3): 514-526. |
[8] | Xing Chao, Ren Mengzhang, Luo Hong. The Existence of Global Weak Solutions to Thermohaline Circulation Equations [J]. Acta mathematica scientia,Series A, 2018, 38(2): 284-290. |
[9] | Cai Gang. The Well-Posedness of Degenerate Differential Equations with Finite Delay in Banach Spaces [J]. Acta mathematica scientia,Series A, 2018, 38(2): 264-275. |
[10] | Du Guangwei, Niu Pengcheng. Higher Integrability for Very Weak Solutions of Obstacle Problems to Nonlinear Subelliptic Equations [J]. Acta mathematica scientia,Series A, 2017, 37(1): 122-145. |
[11] | Marko Kostić, Li Chenggang, Li Miao. Abstract Multi-Term Fractional Differential Equations with Riemann-Liouville Derivatives [J]. Acta mathematica scientia,Series A, 2016, 36(4): 601-622. |
[12] | LIU Jian, LIAN Ru-Xu, QIAN Mao-Fu. Global Existence of Solution to Bipolar Navier-Stokes-Poisson System [J]. Acta mathematica scientia,Series A, 2014, 34(4): 960-976. |
[13] | QU Feng-Long, LI Xi-Liang. The Interior Transmission Problem for Isotropic Maxwell Equations and Some Estimates on the Index of Refraction [J]. Acta mathematica scientia,Series A, 2013, 33(6): 1178-1188. |
[14] | ZHU Li, XIA Fu-Quan . Levitin-Polyak Well-posedness of Generalized Mixed Variational Inequalities [J]. Acta mathematica scientia,Series A, 2012, 32(4): 633-643. |
[15] | RUI Jie, YANG Xiao-Ping. Existence of Weak Solutions for the Minimizing Total Variation Flow with Dirichlet Boundary Conditions [J]. Acta mathematica scientia,Series A, 2011, 31(4): 958-969. |
|