Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (5): 1259-1268.
Previous Articles Next Articles
Received:
2020-01-08
Online:
2020-10-26
Published:
2020-11-04
Contact:
Juan Wang
E-mail:sjhuang@ahnu.edu.cn;649644039@qq.com
Supported by:
CLC Number:
Shoujun Huang,Juan Wang. Blow up of Solutions to Semilinear Wave Equations with Variable Coefficient for Nonlinearity in an N-Dimensional Exterior Domain[J].Acta mathematica scientia,Series A, 2020, 40(5): 1259-1268.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Fritz J . Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math, 1979, 28, 235- 268
doi: 10.1007/BF01647974 |
2 |
Glassey R T . Finite-time blow-up for solutions of nonlinear wave equations. Math Z, 1981, 177, 323- 340
doi: 10.1007/BF01162066 |
3 |
Strauss W A . Nonlinear scattering theory at low energy. J Funct Anal, 1981, 41, 110- 133
doi: 10.1016/0022-1236(81)90063-X |
4 |
Sideris T C . Nonexistence of global solutions to semilinear wave equations in high dimensions. J Differential Equations, 1984, 52, 378- 406
doi: 10.1016/0022-0396(84)90169-4 |
5 | Zhou Y . Cauchy problem for semilinear wave equations in four space dimensions with small initial data. J Partial Differential Equations, 1995, 8, 135- 144 |
6 |
Georgiev V , Lindblad H , Sogge C D . Weighted Strichartz estimates and global existence for semilinear wave equations. Amer J Math, 1997, 119, 1291- 1319
doi: 10.1353/ajm.1997.0038 |
7 |
Shaeffer J . The equation $u_{tt}-\Delta u=|u|^{p}$ for the critical value of p. Proc Roy Soc Edinburgh Sect A, 1985, 101, 31- 44
doi: 10.1017/S0308210500026135 |
8 |
Yordanov B T , Zhang Q S . Finite time blow up for critical wave equations in high dimensions. J Funct Anal, 2006, 231, 361- 374
doi: 10.1016/j.jfa.2005.03.012 |
9 |
Zhou Y . Blow up of solutions to semilinear wave equations with critical exponent in high diensions. Chin Ann Math Ser B, 2007, 28, 205- 212
doi: 10.1007/s11401-005-0205-x |
10 | Sobajima M, Wakasa K. Finite time blowup of solutions to semilinear wave equation in an exterior domain. 2018, arXiv: 1812.09128 |
11 | Du Y , Metcalfe J , Sogge C D , Zhou Y . Concerning the Strauss conjecture and almost global existence for nonlinear Dirichlet-wave equations in 4-dimensions. Comm Partial Differential Equations, 2008, 33 (79): 1487- 1506 |
12 | Hidanoidano K , Metcalfe J , Smith H F , et al. On abstract Strichartz estimates and the Strauss conjecture for nontrapping obstacles. Trans Amer Math Soc, 2010, 362, 2789- 2809 |
13 | Yu X . Generalized Strichartz estimates on perturbed wave equation and applications on Strauss conjecture. Differential Integral Equations, 2011, 24, 443- 468 |
14 |
Zhou Y , Han W . Blow-up for solutions to semilinear wave equations with variable coefficients and boundary. J Math Anal Appl, 2011, 374, 585- 601
doi: 10.1016/j.jmaa.2010.08.052 |
15 | Zha D , Zhou Y . Lifespan of classical solutions to quasilinear wave equations outside of a star-shaped obstacle in four space dimensions. J Math Pures Appl, 2015, 103 (9): 788- 808 |
16 |
Lai N A , Zhou Y . Finite time blow up to critical semilinear wave equation outside the ball in 3D. Nonlinear Anal, 2015, 125, 550- 560
doi: 10.1016/j.na.2015.06.007 |
17 |
Lai N A , Zhou Y . Nonexistence of global solutions to critical semilinear wave equationn in exterior domain in high dimensions. Nonlinear Anal, 2016, 143, 89- 104
doi: 10.1016/j.na.2016.05.010 |
18 |
Zhang Q D . Global existence and finite time blow up for the weighted semilinear wave equation. Nonlinear Analysis: Real World Applications, 2020, 51, 103006
doi: 10.1016/j.nonrwa.2019.103006 |
19 | Ikeda M , Sobajima M . Remark on upper bound for lifespan of solutions to evolution equations in a two-dimensional exterior domain. J Math Anal Appl, 2019, 470 (1): 318- 326 |
20 | Ikeda M, Sobajima M. Upper bound for lifespan of solutions to certain semilinear parabolic, dispersive and hyperbolic equations via a unified test function method. 2017, arXiv: 1710.06780 |
[1] | Huang Shoujun, Meng Xiwang. Improved Ordinary Differential Inequality and Its Application to Semilinear Wave Equations [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1319-1332. |
[2] | Hongbiao Jiang,Haihang Wang. Lifespan Estimation of Solutions to Cauchy Problem of Semilinear Wave Equation [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1146-1157. |
[3] | Yanbing Yang,Wei Lian,Shaobin Huang,Runzhang Xu. Finite Time Blow up of Solutions for Nonlinear Wave Equation with General Nonlinearity for Arbitrarily Positive Initial Energy [J]. Acta mathematica scientia,Series A, 2018, 38(6): 1239-1244. |
[4] | Baoyan Sun. Lower Bound of Blow-Up Time for a p-Laplacian Equation with Nonlocal Source [J]. Acta mathematica scientia,Series A, 2018, 38(5): 911-923. |
[5] | Duan Shuangshuang, Huang Shoujun. Blow up of Periodic Solutions for a Class of Keller-Segel Equations Arising in Biology [J]. Acta mathematica scientia,Series A, 2017, 37(2): 326-341. |
[6] | Geng Jinbo, Yang Zhenzhen, Lai Ning-An. Blow up and Lifespan Estimates for Initial Boundary Value Problem of Semilinear Schrödinger Equations on Half-Life [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1186-1195. |
[7] | Huang Shoujun, Wang Rui. Plane Wave Solutions to the Euler Equations for Chaplygin Gases [J]. Acta mathematica scientia,Series A, 2016, 36(4): 681-689. |
[8] | Lei Qian, Li Ning, Yang Han. Blow Up and Asymptotic Behavior in the Beam Equation [J]. Acta mathematica scientia,Series A, 2015, 35(4): 738-747. |
[9] | Di Huafei, Shang Yadong. Global Existence and Nonexistence of Solutions for A Class of Fourth Order Wave Equation with Nonlinear Damping and Source Terms [J]. Acta mathematica scientia,Series A, 2015, 35(3): 618-633. |
[10] | CHEN Xiang-Ying. Global Existence of Solution of Cauchy Problem for A Generalized IMBq Equation with Weak Damping [J]. Acta mathematica scientia,Series A, 2015, 35(1): 68-82. |
[11] | ZHENG Shen-Zhou, LU Han-Fang. Liouville Theorems on Subelliptic Quasilinear Equations in Unbounded Exterior Domain [J]. Acta mathematica scientia,Series A, 2012, 32(4): 644-653. |
[12] | Wu haigen;Yang han\quad ;Liu Juan. Global Existence for Semilinear wave Equations in Exterior Domain [J]. Acta mathematica scientia,Series A, 2007, 27(6): 1089-1097. |
[13] | Gan Zaihui ;Zhang Jian. Standing Waves for a Class of Coupled Nonlinear Klein-Gordon Equations [J]. Acta mathematica scientia,Series A, 2006, 26(4): 559-569. |
[14] | CHEN You-Peng, XIE Chun-Hong. Global Existence and Nonexistence for a Nonlinear Parabolic Equation with a Nonlinear Boundary Condition [J]. Acta mathematica scientia,Series A, 2005, 25(6): 881-889. |
[15] | BANG Da-Heng, HAN Mao-An, WANG Zhi-Cheng. On the Cauchy Problem for a Reaction Diffusion System with Singular Coefficients [J]. Acta mathematica scientia,Series A, 2005, 25(2): 220-229. |
|