Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (5): 1269-1281.
Previous Articles Next Articles
Miaokun Wang1(),Zaiyin He2(),Yuming Chu1,*()
Received:
2019-03-19
Online:
2020-10-26
Published:
2020-11-04
Contact:
Yuming Chu
E-mail:wmk000@126.com;hzy@zjhu.edu.cn;chuyuming@zjhu.edu.cn
Supported by:
CLC Number:
Miaokun Wang,Zaiyin He,Yuming Chu. Concavity of the Complete p-Elliptic Integral of the Second Kind According to Hölder Mean[J].Acta mathematica scientia,Series A, 2020, 40(5): 1269-1281.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Abramowitz M , Stegun I A . Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Washington: US Government Printing Office, 1964 |
2 | Lehto O , Virtanen K I . Quasiconformal Mappings in the Plane. New York: Springer-Verlag, 1973 |
3 | Anderson G D , Vamanamurthy M K , Vuorinen M . Conformal Invariants, Inequalities, and Quasiconformal Maps. New York: John Wiley & Sons, 1997 |
4 |
András S , Baricz Á . Bounds for complete elliptic integrals of the first kind. Expo Math, 2010, 28 (4): 357- 364
doi: 10.1016/j.exmath.2009.12.005 |
5 |
Wang M K , Chu Y M , Qiu Y F , Qiu S L . An optimal power mean inequality for the complete elliptic integrals. Appl Math Lett, 2011, 24 (6): 887- 890
doi: 10.1016/j.aml.2010.12.044 |
6 | Wang G D , Zhang X H , Chu Y M . A power mean inequality for the Grötzsch ring function. Math Inequal Appl, 2011, 14 (4): 833- 837 |
7 |
Chu Y M , Wang M K , Qiu S L . Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc Indian Acad Sci Math Sci, 2012, 122 (1): 41- 51
doi: 10.1007/s12044-012-0062-y |
8 |
Wang M K , Chu Y M , Qiu S L , Jiang Y P . Bounds for the perimeter of an ellipse. J Approx Theory, 2012, 164 (7): 928- 937
doi: 10.1016/j.jat.2012.03.011 |
9 |
Chu Y M , Qiu Y F , Wang M K . Hölder mean inequalities for the complete elliptic integrals. Integral Transforms Spec Funct, 2012, 23 (7): 521- 527
doi: 10.1080/10652469.2011.609482 |
10 |
Wang G D , Zhang X H , Chu Y M . A power mean inequality involving the complete elliptic integrals. Rocky Mountain J Math, 2014, 44 (5): 1661- 1667
doi: 10.1216/RMJ-2014-44-5-1661 |
11 | Yang Z H, Qian W M, Chu Y M, Zhang W. Monotonicity rule for the quotient of two functions and its application. J Inequal Appl, 2017, Article: 106 |
12 | Qian W M, Chu Y M. Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters. J Inequal Appl, 2017, Article: 274 |
13 | Yang Z H , Qian W M , Chu Y M , Zhang W . On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind. J Math Anal Appl, 2018, 462 (2): 1714- 1726 |
14 | Huang T R, Tan S Y, Ma X Y, Chu Y M. Monotonicity properties and bounds for the complete p-elliptic integrals. J Inequal Appl, 2018, Article: 239 |
15 | Zhao T H, Wang M K, Zhang W, Chu Y M. Quadratic transformation inequalities for Gaussian hypergeometric function. J Inequal Appl, 2018, Article: 251 |
16 | Yang Z H , Qian W M , Chu Y M . Monotonicity properties and bounds involving the complete elliptic integrals of the first kind. Math Inequal Appl, 2018, 21 (4): 1185- 1199 |
17 | Yang Z H , Chu Y M , Zhang W . High accuracy asymptotic bounds for the complete elliptic integral of the second kind. Appl Math Comput, 2019, 348, 552- 564 |
18 | Zhao T H, Zhou B C, Wang M K, Chu Y M. On approximating the quasi-arithmetic mean. J Inequal Appl, 2019, Article: 42 |
19 | Wang J L, Qian W M, He Z Y, Chu Y M. On approximating the Toader mean by other bivariate means. J Funct Spaces, 2019, Article ID: 6082413 |
20 | Wang M K , Chu Y M , Zhang W . Monotonicity and inequalities involving zero-balanced hypergeometric function. Math Inequal Appl, 2019, 22 (2): 601- 617 |
21 | Qiu S L , Ma X Y , Chu Y M . Sharp Landen transformation inequalities for hypergeometric functions, with applications. J Math Anal Appl, 2019, 474 (2): 1306- 1337 |
22 |
Takeuchi S . A new form of the generalized complete elliptic integrals. Kodai Math J, 2016, 39 (1): 202- 226
doi: 10.2996/kmj/1458651700 |
23 | Drábek P , Manásevich R . On the closed solution to some nonhomogeneous eigenvalue problems with p-Laplacian. Differential Integral Equations, 1999, 12 (6): 773- 788 |
24 |
Kobayashi H , Takeuchi S . Applications of generalized trigonometric functions with two parameters. Commun Pure Appl Anal, 2019, 18 (3): 1509- 1521
doi: 10.3934/cpaa.2019072 |
25 | Takeuchi S. Applications of generalized trigonometric functions with two parameters Ⅱ. 2019, arXiv: 1904.01827 |
26 | Takeuchi S . Legendre-type relations for generalized complete elliptic integrals. J Class Anal, 2016, 9 (1): 35- 42 |
27 |
Takeuchi S . Complete p-elliptic integrals and a computation formula of $\pi_{p}$ for p=4. Ramanujan J, 2018, 46 (2): 309- 321
doi: 10.1007/s11139-018-9993-y |
28 | Wang M K , Zhang W , Chu Y M . Monotonicity, convexity and inequalities involving the generalized elliptic integrals. Acta Math Sci, 2019, 39B (5): 1440- 1450 |
29 | Wang M K, Chu H H, Chu Y M. Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals. J Math Anal Appl, 2019, 480(2), Article ID: 123388 |
30 | Huang T R, Han B W, Ma X Y, Chu Y M. Optimal bounds for the generalized Euler-Mascheroni constant. J Inequal Appl 2018, Article: 118 |
31 | Zaheer Ullah S, Adil Khan M, Chu Y M. A note on generalized convex functions. J Inequal Appl, 2019, Article: 291 |
32 | Zhang X H . Monotonicity and functional inequalities for the complete p-elliptic integrals. J Math Anal Appl, 2017, 453 (2): 942- 953 |
33 |
Anderson G D , Qiu S L , Vamanamurthy M K , Vuorinen M . Generalized elliptic integrals and modular equations. Pacific J Math, 2000, 192 (1): 1- 37
doi: 10.2140/pjm.2000.192.1 |
34 |
Baricz Á . Turán inequalities for generalized complete elliptic integrals. Math Z, 2007, 256 (4): 895- 911
doi: 10.1007/s00209-007-0111-x |
35 |
Anderson G D , Sugawa T , Vamanamurthy M K , Vourinen M . Twice-punctured hyperbolic sphere with a conical singularity and generalized elliptic integral. Math Z, 2010, 266 (1): 181- 191
doi: 10.1007/s00209-009-0560-5 |
36 | Neuman E . Inequalities and bounds for generalized complete elliptic integrals. J Math Anal Appl, 2011, 373 (1): 203- 213 |
37 |
Bhayo B A , Vuorinen M . On generalized complete elliptic integrals and modular functions. Proc Edinb Math Soc (2), 2012, 55 (3): 591- 611
doi: 10.1017/S0013091511000356 |
38 | Yang Z H , Chu Y M . A monotonicity property involving the generalized elliptic integral of the first kind. Math Inequal Appl, 2017, 20 (3): 729- 735 |
39 |
Wang M K , Li Y M , Chu Y M . Inequalities and infinite product formula for Ramanujan generalized modular equation function. Ramanujan J, 2018, 46 (1): 189- 200
doi: 10.1007/s11139-017-9888-3 |
40 |
Wang M K , Chu Y M , Zhang W . The precise estimates for the solution of Ramanujan's generalized modular equation. Ramanujan J, 2019, 49 (3): 653- 668
doi: 10.1007/s11139-018-0130-8 |
41 |
He X H , Qian W M , Xu H Z , Chu Y M . Sharp power mean bounds for two Sándor-Yang means. Rev R Acad Cienc Exactas Fís Nat Ser A Mat, 2019, 113 (3): 2627- 2638
doi: 10.1007/s13398-019-00643-2 |
42 | Qian W M, Yang Y Y, Zhang H W, Chu Y M. Optimal two-parameter geometric and arithmetic mean bounds for the Sándor-Yang mean. J Inequal Appl, 2019, Article: 287 |
43 | Bullen P S . Handbook of Means and Their Inequalities. Dordrecht: Kluwer Academic Publishers Group, 2003 |
44 |
Anderson G D , Vamanamurthy M K , Vuorinen M . Generalized convexity and inequalities. J Math Anal Appl, 2007, 335 (2): 1294- 1308
doi: 10.1016/j.jmaa.2007.02.016 |
45 | Baricz Á. Convexity of the zero-balanced Gaussian hypergeometric functions with respect to Hölder means. JIPAM J Inequal Pure Appl Math, 2007, 8(2), Article: 40 |
46 |
Wang M K , Chu Y M , Qiu S L , Jiang Y P . Convexity of the complete elliptic integrals of the first kind with respect to Hölder means. J Math Anal Appl, 2012, 388 (2): 1141- 1146
doi: 10.1016/j.jmaa.2011.10.063 |
47 |
Chu Y M , Wang M K , Jiang Y P , Qiu S L . Concavity of the complete elliptic integrals of the second kind with respect to Hölder means. J Math Anal Appl, 2012, 395 (2): 637- 642
doi: 10.1016/j.jmaa.2012.05.083 |
48 |
Zhou L M , Qiu S L , Wang F . Inequalities for the generalized elliptic integrals with respect to Hölder mean. J Math Anal Appl, 2012, 386 (2): 641- 646
doi: 10.1016/j.jmaa.2011.08.026 |
49 |
Baricz Á , Bhayo B A , Klén R . Convexity properties of generalized trigonometric and hyperbolic functions. Aequationes Math, 2015, 89 (3): 473- 484
doi: 10.1007/s00010-013-0222-x |
50 |
Baricz Á , Bhayo B A , Vuorinen M . Turán inequalities for generalized inverse trigonometric functions. Filomat, 2015, 29 (2): 303- 313
doi: 10.2298/FIL1502303B |
[1] | Miaokun Wang,Yuming Chu,Songliang Qiu. The Simple Proof and Generalization of a Conjecture Concerning Generalized Legendre Identity [J]. Acta mathematica scientia,Series A, 2020, 40(3): 662-666. |
[2] | Yin Li, Huang Liguo. Two Inequalities Related to Generalized Elliptic Integrals [J]. Acta mathematica scientia,Series A, 2018, 38(1): 46-53. |
[3] | Qi Yi, Shi Qingtian. Estimations of Convexity Radius and the Norm of Pre-Schwarz Derivative for Close to Convex Harmonic Mappings [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1057-1066. |
[4] | ZUO Zhan-Fei. Normal Structure and the Generalized Modulus of U-convexity in Banach Spaces [J]. Acta mathematica scientia,Series A, 2013, 33(2): 327-332. |
[5] | CHU Yu-Ming, ZHANG Xiao-Ming, SHI Huan-Nan. Gautschi-type Inequalities and Their Applications [J]. Acta mathematica scientia,Series A, 2012, 32(4): 698-708. |
[6] | QIAO Jin-Jing, WANG Xian-Tao. On p-harmonic Univalent Mappings [J]. Acta mathematica scientia,Series A, 2012, 32(3): 588-600. |
[7] | XU Jin-Ju. A Remark on the Convexity of Hypersurface with Prescribed Curvature Equations [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1176-1180. |
[8] | RAO Ro-Feng. New Composite Implicit Iterative Scheme With Errors [J]. Acta mathematica scientia,Series A, 2009, 29(3): 823-831. |
[9] |
Zhang Xiaohui;Qiu Songliang;Chu Yuming ;Wang Gendi.
Some Sharp Inequalities for Generalized Grotzsch Ring Function [J]. Acta mathematica scientia,Series A, 2008, 28(1): 59-065. |
[10] | FAN Li-Ya, LIU San-Yang. Existence of Feasible Solutions of Bilevel Programming [J]. Acta mathematica scientia,Series A, 2003, 23(6): 739-744. |
|