1 |
Villani C. A Review of Mathematical Topics in Collisional Kinetic Theory. Amsterdam: North-Holland, 2002
|
2 |
Guo Y . The Landau equation in a periodic box. Comm Math Phys, 2002, 231 (3): 391- 434
doi: 10.1007/s00220-002-0729-9
|
3 |
Carrapatoso K , Mischler S . Landau equation for very soft and Coulomb potentials near Maxwellians. Ann PDE, 2017, 3 (1): Artcile 1
doi: 10.1007/s40818-017-0021-0
|
4 |
Caflisch R E . The Boltzmann equation with a soft potential. II. Nonlinear, spatially-periodic. Comm Math Phys, 1980, 74 (2): 97- 109
doi: 10.1007/BF01197752
|
5 |
Strain R M , Guo Y . Exponential decay for soft potentials near Maxwellian. Arch Ration Mech Anal, 2008, 187 (2): 287- 339
doi: 10.1007/s00205-007-0067-3
|
6 |
Strain R M , Guo Y . Almost exponential decay near Maxwellian. Comm Partial Differential Equations, 2006, 31 (1/3): 417- 429
|
7 |
Strain R M . Optimal time decay of the non cut-off Boltzmann equation in the whole space. Kinet Relat Models, 2012, 5 (3): 583- 613
doi: 10.3934/krm.2012.5.583
|
8 |
Sohinger V , Strain R M . The Boltzmann equation, Besov spaces, and optimal time decay rates in Rn x. Adv Math, 2014, 261, 274- 332
doi: 10.1016/j.aim.2014.04.012
|
9 |
Kim J, Guo Y, Hwang H J. A L2 to L∞ approach for the Landau equation. 2016, arXiv: 1610.05346
|
10 |
Guo Y, Hwang H J, Jang J W, Ouyang Z. The Landau equation with the specular reflection boundary condition. 2019, arXiv: 1905.00173
|
11 |
Duan R J, Liu S Q, Sakamoto S, Strain R M. Global mild solutions of the Landau equation and non-cutoff Boltzmann equations. 2019, arXiv: 1904.12086
|