Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (3): 784-795.
Previous Articles Next Articles
Liping Luo*(),Zhenguo Luo(
),Yunhui Zeng
Received:
2019-03-13
Online:
2020-06-26
Published:
2020-07-15
Contact:
Liping Luo
E-mail:robert186@163.com
Supported by:
CLC Number:
Liping Luo,Zhenguo Luo,Yunhui Zeng. Oscillation Conditions of Certain Nonlinear Impulsive Neutral Parabolic Distributed Parameter Systems[J].Acta mathematica scientia,Series A, 2020, 40(3): 784-795.
1 | 罗李平, 罗振国, 邓义华. 脉冲扰动对非线性时滞双曲型分布参数系统振动的影响. 数学物理学报, 2018, 38A (2): 313- 321 |
2 | 马晴霞, 刘安平. 脉冲时滞中立双曲型方程组的振动性. 数学物理学报, 2016, 36A (3): 462- 472 |
3 | 罗李平, 罗振国, 杨柳. 具脉冲扰动和时滞效应的拟线性抛物系统的(强)振动分析. 应用数学学报, 2016, 39 (1): 21- 30 |
4 | Ma Q X , Liu A P . Oscillation criteria of neutral type impulsive hyperbolic equations. Acta Mathematica Scientia, 2014, 34B (6): 1845- 1853 |
5 | Ning X Q , You S J . Oscillation of the systems of impulsive hyperbolic partial differential equations. Journal of Chemical and Pharmaceutical Research, 2014, 6 (7): 1370- 1377 |
6 | 罗李平, 曾云辉, 罗振国. 具脉冲和时滞效应的拟线性双曲系统的振动性定理. 应用数学学报, 2014, 37 (5): 824- 834 |
7 | Yang J C , Liu A P , Liu G J . Oscillation of solutions to neutral nonlinear impulsive hyperbolic equations with several delays. Electronic Journal of Differential Equations, 2013, 2013 (27): 1- 10 |
8 | 罗李平, 罗振国, 曾云辉. 基于脉冲控制的非线性时滞双曲系统的振动分析. 系统科学与数学, 2013, 33 (9): 1024- 1032 |
9 | Liu A P , Liu T , Zou M . Oscillation of nonlinear impulsive parabolic differential equations of neutral type. Rocky Mountain Journal of Mathematics, 2011, 41 (3): 833- 850 |
10 | 罗李平, 杨柳. 具高阶Laplace算子的非线性脉冲时滞双曲型方程的振动判据. 系统科学与数学, 2009, 29 (12): 1672- 1678 |
11 | Gilbarg D , Trudinger N S . Elliptic Partial Equations of Second Order. Berlin: Springer-Verlag, 1977 |
12 | Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations. Singapore: World Scientific Publishing Co Pte Ltd, 1989 |
[1] | Wangjin Yao. Existence and Multiplicity of Solutions for a Coupled System of Impulsive Differential Equations via Variational Method [J]. Acta mathematica scientia,Series A, 2020, 40(3): 705-716. |
[2] | Jimeng Li,Jiashan Yang. Philos-Type Criteria for Second-Order Delay Differential Equations with Nonlinear Neutral Term [J]. Acta mathematica scientia,Series A, 2020, 40(1): 169-186. |
[3] | Yanfang Mei,Youjun Wang. Three Types of Solutions for a Class of Nonlinear Schrödinger Equations [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1087-1093. |
[4] | Jimeng Li. Oscillation Analysis of Second-Order Generalized Emden-Fowler-Type Delay Differential Equations [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1041-1054. |
[5] | Zhiyu Zhang,Yuanhong Yu,Shuping Li,Shizhu Qiao. Oscillation of Second Order Nonlinear Differential Equations with Neutral Delay [J]. Acta mathematica scientia,Series A, 2019, 39(4): 797-811. |
[6] | Wenjuan Li,Shuhai Li,Yuanhong Yu. Oscillation of Second Order Nonlinear Neutral Differential Equations with Distributed Delay [J]. Acta mathematica scientia,Series A, 2019, 39(4): 812-822. |
[7] | Bo Zhu,Lishan Liu. Existence and Uniqueness of the Mild Solutions for a Class of Fractional Non-Autonomous Evolution Equations with Impulses [J]. Acta mathematica scientia,Series A, 2019, 39(1): 105-113. |
[8] | Wang Huiwen, Zeng Hongjuan, Li Fang. An Existence Result for Impulsive Boundary Value Problem for Fractional Differential Equations with Multiple Base Points [J]. Acta mathematica scientia,Series A, 2018, 38(4): 697-715. |
[9] | Wang Huiling, Gao Jianfang. Oscillation Analysis of Analytical Solutions for a Kind of Nonlinear Neutral Delay Differential Equations with Several Delays [J]. Acta mathematica scientia,Series A, 2018, 38(4): 740-749. |
[10] | Zhang Xiaojian. Oscillation of Generalized Emden-Fowler Differential Equations with Nonlinear Neutral Term [J]. Acta mathematica scientia,Series A, 2018, 38(4): 728-739. |
[11] | Luo Liping, Luo Zhenguo, Deng Yihua. Effect of Impulsive Perturbations on Oscillation of Nonlinear Delay Hyperbolic Distributed Parameter Systems [J]. Acta mathematica scientia,Series A, 2018, 38(2): 313-321. |
[12] | Yang Jiashan, Li Tongxing. Oscillation for a Class of Second-Order Damped Emden-Fowler Dynamic Equations on Time Scales [J]. Acta mathematica scientia,Series A, 2018, 38(1): 134-155. |
[13] | Li Wenjuan, Tang Huo, Yu Yuanhong. Oscillation of the Neutral Emden-Fowler Differential Equation [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1062-1069. |
[14] | Wang Yunzhu, Gao Jianfang. Oscillation Analysis of Numerical Solutions in the θ-Methods for a Kind of Nonlinear Delay Differential Equation [J]. Acta mathematica scientia,Series A, 2017, 37(2): 342-351. |
[15] | Zeng Yunhui, Luo Liping, Yu Yuanhong. Oscillation Criteria for Generalized Neutral Emden-Fowler Equations [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1067-1081. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 101
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 61
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|