Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (3): 756-783.
Previous Articles Next Articles
Received:
2019-03-29
Online:
2020-06-26
Published:
2020-07-15
Contact:
Shengfan Zhou
E-mail:zhoushengfan@yahoo.com
Supported by:
CLC Number:
Zongfei Han,Shengfan Zhou. Random Exponential Attractor for Non-Autonomous Stochastic FitzHugh-Nagumo System with Multiplicative Noise in R3[J].Acta mathematica scientia,Series A, 2020, 40(3): 756-783.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Temam R . Infinite-Dimensional Dynamical Systems in Mechanics and Physics. New York: Springer-Verlag, 1997 |
2 | Robinson J C . Infinite-Dimensional Dynamical Systems:An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors. Cambridge: Cambridge University Press, 2001 |
3 | Sell G R , You Y . Dynamics of Evolutionary Equations. New York: Springer-Verlag, 2002 |
4 |
Marion M . Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems. SIAM J Math Anal, 1989, 20, 816- 844
doi: 10.1137/0520057 |
5 | Chepyzhov V V, Vishik M I. Attractors for Equations of Mathematical Physics. Providence, RI: AMS Colloquium Publications, 2000 |
6 |
Haraux A . Attractors of asymptotically compact processes and applications to nonlinear partial differential equations. Comm Partial Differential Equations, 1988, 13, 1383- 1414
doi: 10.1080/03605308808820580 |
7 |
Ruelle D . Characteristic exponents for a viscous fluid subjected to time dependent forces. Comm Math Phys, 1984, 93, 285- 300
doi: 10.1007/BF01258529 |
8 |
Caraballo T , Lukaszewicz G , Real J . Pullback attractors for asymptotically compact non-autonomous dynamical systems. Nonlinear Anal, 2006, 64, 484- 498
doi: 10.1016/j.na.2005.03.111 |
9 | Arnold L . Random Dynamical Systems. New York: Springer-Verlag, 2013 |
10 |
Crauel H , Flandoli F . Attractors for random dynamical systems. Probab Theory Related Fields, 1994, 100, 365- 393
doi: 10.1007/BF01193705 |
11 |
Crauel H , Debussche A , Flandoli F . Random attractors. J Dynam Differential Equations, 1997, 9, 307- 341
doi: 10.1007/BF02219225 |
12 |
Wang B . Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems. J Differential Equations, 2012, 253, 1544- 1583
doi: 10.1016/j.jde.2012.05.015 |
13 | Chueshov I . Monotone Random Systems Theory and Applications. New York: Springer, 2004 |
14 |
Bates P W , Lu K , Wang B . Random attractors for stochastic reaction-diffusion equations on unbounded domains. J Differential Equations, 2009, 246, 845- 869
doi: 10.1016/j.jde.2008.05.017 |
15 |
Li D , Wang B , Wang X . Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains. J Differential Equations, 2017, 262, 1575- 1602
doi: 10.1016/j.jde.2016.10.024 |
16 | Yin J , Li Y , Gu A . Regularity of pullback attractors for non-autonomous stochastic coupled reaction-diffusion systems. J Appl Anal Comput, 2017, 7, 884- 898 |
17 | Wang B . Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms. Stoch Dyn, 2014, 14, 1791- 1798 |
18 | Eden A, Foias C, Nicolaenko B, Temam R. Exponential Attractors for Dissipative Evolution Equations. Chichester: John Wiley & Sons, 1994 |
19 |
Efendiev M , Miranville A , Zelik S . Exponential attractors for a nonlinear reaction-diffusion system in R3. C R Acad Sci Paris Ser I Math, 2000, 330, 713- 718
doi: 10.1016/S0764-4442(00)00259-7 |
20 |
Efendiev M , Zelik S , Miranville A . Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems. Proc Roy Soc Edinburgh Sect A, 2005, 135, 703- 730
doi: 10.1017/S030821050000408X |
21 |
Czaja R , Efendiev M . Pullback exponential attractors for nonautonomous equations Part Ⅰ:Semilinear parabolic problems. J Math Anal Appl, 2011, 381, 748- 765
doi: 10.1016/j.jmaa.2011.03.053 |
22 |
Langa J A , Miranville A , Real J . Pullback exponential attractors. Discrete Contin Dyn Syst, 2010, 26, 1329- 1357
doi: 10.3934/dcds.2010.26.1329 |
23 |
Carvalho A N , Sonner S . Pullback exponential attractors for evolution processes in Banach spaces:Theoretical results. Commun Pure Appl Anal, 2013, 12, 3047- 3071
doi: 10.3934/cpaa.2013.12.3047 |
24 |
Carvalho A N , Sonner S . Pullback exponential attractors for evolution processes in Banach spaces:Properties and applications. Commun Pure Appl Anal, 2014, 13, 1141- 1165
doi: 10.3934/cpaa.2014.13.1141 |
25 | Shirikyan A , Zelik S . Exponential attractors for random dynamical systems and applications. Stoch Partial Differ Equ Anal Comput, 2013, 1, 241- 281 |
26 |
Caraballo T , Sonner S . Random pullback exponential attractors:General existence results for random dynamical systems in Banach spaces. Discrete Contin Dyn Syst, 2017, 37, 6383- 6403
doi: 10.3934/dcds.2017277 |
27 |
Zhou S . Random exponential attractor for cocycle and application to non-autonomous stochastic lattice systems with multiplicative white noise. J Differential Equations, 2017, 263, 2247- 2279
doi: 10.1016/j.jde.2017.03.044 |
28 |
Zhou S . Random exponential attractor for stochastic reaction-diffusion equation with multiplicative noise in R3. J Differential Equations, 2017, 263, 6347- 6383
doi: 10.1016/j.jde.2017.07.013 |
29 |
Wang Z , Zhou S . Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete Contin Dyn Syst, 2018, 38, 4767- 4817
doi: 10.3934/dcds.2018210 |
30 |
FitzHugh R . Impulses and physiological states in theoretical models of nerve membrane. Biophys J, 1961, 1, 445- 466
doi: 10.1016/S0006-3495(61)86902-6 |
31 |
Nagumo J , Arimoto S , Yoshizawa S . An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 1962, 50, 2061- 2070
doi: 10.1109/JRPROC.1962.288235 |
32 |
Vleck E V , Wang B . Attractors for lattice FitzHugh-Nagumo systems. Phys D, 2005, 212, 317- 336
doi: 10.1016/j.physd.2005.10.006 |
33 |
Wang B . Dynamical behavior of the almost-periodic discrete FitzHugh-Nagumo systems. Internat J Bifur Chaos Appl Sci Engrg, 2007, 17, 1673- 1685
doi: 10.1142/S0218127407017987 |
34 |
Adili A , Wang B . Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise. Discrete Contin Dyn Syst SI, 2013, Supp, 1- 10
doi: 10.3934/proc.2013.2013.1 |
35 |
Adili A , Wang B . Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing. Discrete Contin Dyn Syst Ser B, 2013, 3, 643- 666
doi: 10.1016/j.jde.2012.05.015 |
36 | Du X , Guo B . The long time behavior for partly dissipative stochastic systems. J Appl Anal Comput, 2011, 1, 449- 465 |
37 |
Gu A , Li Y . Singleton sets random attractor for stochastic FitzHugh-Nagumo lattice equations driven by fractional Brownian motions. Commun Nonlinear Sci Numer Simul, 2014, 19, 3929- 3937
doi: 10.1016/j.cnsns.2014.04.005 |
38 |
Tang B . Regularity of pullback random attractors for stochasitic FitzHugh-Nagumo system on unbounded domains. Discrete Contin Dyn Syst, 2014, 35, 441- 466
doi: 10.1016/j.jde.2005.06.008 |
39 |
Huang J . The random attractor of stochastic FitzHugh-Nagumo equations in an infinite lattice with white noises. Phys D, 2007, 233, 83- 94
doi: 10.1016/j.physd.2007.06.008 |
40 | Huang J , Shen W . Global attractors for partly dissipative random/stochastic reaction diffusion systems. Int J Evol Equ, 2010, 4, 383- 411 |
41 |
Wang Y , Liu Y , Wang Z . Random attractors for partly dissipative stochastic lattice dynamical systems. J Difference Equ Appl, 2008, 14, 799- 817
doi: 10.1080/10236190701859542 |
42 |
Zhou S , Wang Z . Finite fractal dimensions of random attractors for stochastic FitzHugh-Nagumo system with multiplicative white noise. J Math Anal Appl, 2016, 441, 648- 667
doi: 10.1016/j.jmaa.2016.04.038 |
43 | Adams R A , Fournier J F . Sobolev Spaces. Second Edition. New York: Academic Press, 2009 |
44 |
Caraballo T , Kloeden P E , Schmalfuß B . Exponentially stable stationary solutions for stochastic evolution equations and their perturbation. Appl Math Optim, 2004, 50, 183- 207
doi: 10.1007/s00245-004-0802-1 |
45 |
Fan X . Attractors for a damped stochastic wave equation of Sine-Gordon type with sublinear multiplicative noise. Stoch Anal Appl, 2006, 24, 767- 793
doi: 10.1080/07362990600751860 |
[1] | Liang Yunyun, Zhu Zeqi, Zhao Min, Zhao Caidi. Finite Fractal Dimension of Kernel Sections for Long-Wave-Short-Wave Resonance Equations on Infinite Lattices [J]. Acta mathematica scientia,Series A, 2015, 35(6): 1146-1157. |
[2] | SUN Hong-Quan. The Study of Fractal Interpolation on Rectangular Area [J]. Acta mathematica scientia,Series A, 2009, 29(3): 773-783. |
[3] | XIONG Ying. On Fractal Dimensions of some Level Sets of Random Walk [J]. Acta mathematica scientia,Series A, 2009, 29(2): 283-289. |
[4] | SHANG Ya-Dong, GUO Bo-Ling. The Global Attractors for the Periodic Initial Value Problem for Dissipative Generalized Symmetric Regularized Long Wave Equations [J]. Acta mathematica scientia,Series A, 2003, 23(6): 745-757. |
|