Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (3): 694-704.
Previous Articles Next Articles
Fang Fang*(),Beibei Hu,Ling Zhang
Received:
2019-03-19
Online:
2020-06-26
Published:
2020-07-15
Contact:
Fang Fang
E-mail:fangfang7679@163.com
Supported by:
CLC Number:
Fang Fang,Beibei Hu,Ling Zhang. Nonlinear Integrable Couplings and Bargmann Symmetry Constraint of Super Generalized-Burgers Hierarchy[J].Acta mathematica scientia,Series A, 2020, 40(3): 694-704.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Gürses M , Oguz O . A super AKNS scheme. Phys Lett A, 1985, 108, 437- 440
doi: 10.1016/0375-9601(85)90033-7 |
2 |
Chowdhury A R , Roy S . On the Bäckland transformation and Hamiltonian properties of superevaluation equations. J Math Phys, 1986, 27, 2464- 2468
doi: 10.1063/1.527309 |
3 |
Kupershmidt B A . A super Korteweg-de Vries equation:An integrable system. Phys Lett A, 1984, 102, 213- 215
doi: 10.1016/0375-9601(84)90693-5 |
4 |
Ma W X , He J S , Qin Z Y . A supertrace identity and its applications to superintegrable systems. J Math Phys, 2008, 49, 033511
doi: 10.1063/1.2897036 |
5 |
Tao S X , Xia T C , Shi H . Super-KN hierarchy and its super-Hamiltonian structure. Commun Theor Phys, 2011, 55, 391- 395
doi: 10.1088/0253-6102/55/3/03 |
6 | You F C , Zhang J , Zhao Y . Super-Hamiltonian structures and conservation laws of a new Six-Component Super-Ablowitz-Kaup-Newell-Segur hierarchy. Abstract and Applied Analysis, 2014, 2014, 1- 7 |
7 |
Yu J , Ma W X , Ha J W , Chen S T . An integrable generalization of the super AKNS hierarchy and its bi-Hamiltonian formulation. Commun Nonlin Sci Numer Simulat, 2017, 43, 151- 157
doi: 10.1016/j.cnsns.2016.06.033 |
8 |
Han J W , Yu J . A generalized super AKNS hierarchy associated with Lie superalgebra sl(2|1) and its super bi-Hamiltonian structure. Commun Nonlin Sci Numer Simulat, 2017, 44, 258- 265
doi: 10.1016/j.cnsns.2016.08.009 |
9 | Zhang J , You F C , Zhao Y . A new super extension of Dirac hierarchy. Abstract and Applied Analysis, 2014, 2014, 93- 98 |
10 | Ye Y J, Li Z H, Shen S F, Li C X. A generalized super integrable hierarchy of Dirac type. 2016, Arxiv ID: 1604.03728 |
11 | Fuchssteiner B. Coupling of completely integrable systems: the perturbation bundle//Clarkson P A. Applications of Analytic and Geometric Methods to Nonlinear Differential Equations. Dordrecht: Kluwer, 2009: 125-138 |
12 | Zhang Y F , Guo F K . Two pairs of Lie algebras and the integrable couplings as well as the Hamiltonian structure of the Yang hierarchy. Chaos, Solitons and Fractals, 2007, 34 (2): 490- 495 |
13 |
Zhang Y F , Tam H W . New integrable couplings and Hamiltonian structure of the KN hierarchy and the DLW hierarchy. Commun Nonlin Sci Numer Simulat, 2008, 13 (3): 524- 533
doi: 10.1016/j.cnsns.2006.06.003 |
14 |
Ma W X , Zhang Y . Component-trace identities for hamiltonian structures. Applicable Analysis, 2010, 89 (4): 457- 472
doi: 10.1080/00036810903277143 |
15 | Tao S X , Xia T C . Lie algebra and Lie super algebra for integrable couplingof C-KdV hierarchy. Chin Phys Lett, 2010, 27 (4): 5- 8 |
16 | Ma W X . Nonlinear continuous integrable hamiltonian couplings. Appl Math Comput, 2011, 217, 7238- 7244 |
17 |
Ma W X , Zhu Z N . Constructing nonlinear discrete integrable Hamiltonian couplings. Appl Math Comput, 2010, 60, 2601- 2608
doi: 10.1016/j.camwa.2010.08.076 |
18 | Tao S X , Xia T C . Nonlinear super integrable couplings of super Broer-Kaup-Kupershmidt hierarchy and its super Hamiltonian structures. Adv Math Phys, 2013, 2013, 1- 8 |
19 |
You F C , Zhang J . Nonlinear superintegrable couplings for supercoupled KdV hierarchy with self-consistent sources. Rep Math Phys, 2015, 76, 131- 140
doi: 10.1016/S0034-4877(15)00032-4 |
20 | Xing X Z , Wu J Z , Geng X G . Nonlinear super integrable couplings of super classical Boussinesq hierarchy. J Appl Math, 2014, 2014, 726- 732 |
21 |
Hu B B , Ma W X , Xia T C , Zhang L . Nonlinear integrable couplings of a generalized super Ablowitz-Kaup-Newell-Segur hierarchy and its super bi-Hamiltonian structures. Math Meth Appl Sci, 2018, 41, 1565- 1577
doi: 10.1002/mma.4686 |
22 | Cao C W . A cubic system which generates Bargmann potential and N-gappotential. Chin Quart J Math, 1988, 3 (1): 90- 96 |
23 | 曹策问. AKN族的Lax组的非线性化. 中国科学, 1989, 7, 691- 698 |
Cao C W . Binary nonlinearization of AKN hierarchy. Chin Sci, 1989, 7, 691- 698 | |
24 |
Zeng Y B , Li Y S . The constraints of potentials and the finite-dimensional integrable systems. J Math Phys, 1989, 30 (8): 1679- 1689
doi: 10.1063/1.528253 |
25 | Cao C W . Nolinearization of the Lax system for AKNS hierarchy. Sci China Ser A, 1990, 3315, 528- 536 |
26 |
Cao C W , Geng X G . Neumann and Bargmann systems associated with the coupled KdV soliton hierarchy. J Phy A Math Gen, 1990, 23 (18): 4117- 4125
doi: 10.1088/0305-4470/23/18/017 |
27 |
Cao C W , Geng X G . A monconfocal generator of involutive systems and three associated soliton hierarchies. J Math Phys, 1991, 32 (9): 2323- 2328
doi: 10.1063/1.529156 |
28 |
Cao C W . A classical integrable system and the involutive representation of solutions of the KdV equation. Acta Math Sinica, 1991, 7 (3): 216- 223
doi: 10.1007/BF02582998 |
29 |
Xia T C . Integrable couplings of classical-Boussinesq hierarchy and its Hamiltonian structure. Commun Theor Phys, 2010, 53, 25- 27
doi: 10.1088/0253-6102/53/1/06 |
30 |
Hu X B . An approach to generate superextentions of integrable systems. Phys A:Math General, 1997, 30, 619- 632
doi: 10.1088/0305-4470/30/2/023 |
31 | Yang H X , Du J , Xu X X , Cui J P . Hamiltonian and Super-Hamiltonian systems of a hierarchy of soliton equations. Appl Math Comput, 2010, 217, 1497- 1508 |
32 |
Ma W X , He J S , Qin Z Y . A supertrance identity and its applications to superintegrable systems. J Math Phys, 2008, 49, 033511
doi: 10.1063/1.2897036 |
33 |
Yu J , Han J W , He J S . Binary nonlinearization of the super AKNS system under an implicit symmetry constraint. Phys A:Math Theo, 2009, 42, 465201
doi: 10.1088/1751-8113/42/46/465201 |
34 |
Zeng Y B , Ma W X , Lin R L . Integration of the soliton hierarchy with self-consistent sources. J Math Phys, 2000, 41, 5453- 5489
doi: 10.1063/1.533420 |
[1] | Zhang Ning, Xia Tiecheng. A New Integrable Nonlinear Lattice Equation Hierarchy and Their Integrable Symplectic Map [J]. Acta mathematica scientia,Series A, 2017, 37(5): 814-824. |
[2] | ZHANG Ling, ZHU Hong-Ling. The Bargmann Symmetry Constraint and Binary Nonlinearization of the Super Li System [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1287-1295. |
[3] | WEI Han-Yu, JIA Tie-Cheng, YUE Chao. Nonlinear Integrable Couplings of Super Broer-Kaup-Kupershmidt Hierarchy and Its Hamiltonian Structures [J]. Acta mathematica scientia,Series A, 2013, 33(4): 686-695. |
[4] | XIA Tie-Cheng, ZHANG Deng-Peng, TEMUER Chao-Lu. New Integrable Couplings of Tu Hierarchy with Self-consistent Sources [J]. Acta mathematica scientia,Series A, 2012, 32(5): 941-949. |
|