Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (3): 705-716.
Previous Articles Next Articles
Received:
2019-03-13
Online:
2020-06-26
Published:
2020-07-15
CLC Number:
Wangjin Yao. Existence and Multiplicity of Solutions for a Coupled System of Impulsive Differential Equations via Variational Method[J].Acta mathematica scientia,Series A, 2020, 40(3): 705-716.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Bai L , Dai B X . Three solutions for a p-Laplacian boundary value problem with impulsive effects. Appl Math Comput, 2011, 217 (24): 9895- 9904 |
2 | Chen P , Tang X H . Existence and multiplicity of solutions for second-order impulsive differential equations with Dirichlet problems. Appl Math Comput, 2012, 218 (24): 11775- 11789 |
3 | Dong W , Xu J F . Existence of weak solutions for a p-Laplacian problem involving Dirichlet boundary condition. Appl Math Comput, 2014, 248, 511- 518 |
4 | Dong W , Xu J F , Zhang X Y . Weak solutions for a p-Laplacian impulsive differential equation. Abstr Appl Anal, 2013, 2013 (3): 547- 566 |
5 |
Esteban J R , Vazquez J L . On the equation of turbulent filtration in one-dimensional porous media. Nonlinear Anal:TMA, 1986, 10 (11): 1303- 1325
doi: 10.1016/0362-546X(86)90068-4 |
6 | Herrero M A , Vazquez J L . On the propagation properties of a nonlinear degenerate parabolic equation. Commun Part Differ Equa, 1982, 7 (12): 1381- 1402 |
7 |
Liu J , Zhao Z Q . An application of variational methods to second-order impulsive differential equation with derivative dependence. Electron J Differ Equa, 2014, 2014, 62
doi: 10.1186/1687-1847-2014-62 |
8 |
Liu Z S , Chen H B , Zhou T J . Variational methods to the second-order impulsive differential equation with Dirichlet boundary value problem. Comput Math Appl, 2011, 61 (6): 1687- 1699
doi: 10.1016/j.camwa.2011.01.042 |
9 |
Nieto J J . Variational formulation of a damped Dirichlet impulsive problem. Appl Math Lett, 2010, 23 (8): 940- 942
doi: 10.1016/j.aml.2010.04.015 |
10 |
Nieto J J , O'Regan D . Variational approach to impulsive differential equations. Nonlinear Anal:RWA, 2009, 10 (2): 680- 690
doi: 10.1016/j.nonrwa.2007.10.022 |
11 | Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. Providence, RI: American Mathematical Society, 1986 |
12 | Shi H X , Chen H B , Zhang Q . Infinitely many solutions for a p-Laplacian boundary value problem with impulsive effects. J Appl Math Comput, 2014, 46 (1/2): 93- 106 |
13 |
Tian Y , Ge W G . Applications of variational methods to boundary-value problem for impulsive differential equations. Proc Edinburgh Math Soc, 2008, 51 (2): 509- 527
doi: 10.1017/S0013091506001532 |
14 | Wu Y Q , Liu W B . Variational approach to impulsive differential system. Adv Differ Equ, 2015, 2015 (1): 1- 10 |
15 | Zhang D . Multiple solutions of nonlinear impulsive differential equations with Dirichlet boundary conditions via variational method. Results Math, 2013, 63 (1/2): 611- 628 |
16 | Zhang D , Dai B X . Existence of solutions for nonlinear impulsive differential equations with Dirichlet boundary conditions. Math Comput Model, 2011, 53 (5/6): 1154- 1161 |
17 |
Zhou J J , Chen H B , Almuaalemi B O M . Existence and multiplicity of solutions for some damped Dirichlet nonlinear impulsive differential equations. Differ Equ Dyn Syst, 2016, 24 (2): 135- 148
doi: 10.1007/s12591-016-0273-2 |
18 | 张然.几类脉冲耦合系统边值问题弱解的存在性研究[D].江苏:中国矿业大学, 2017 |
Zhang R. Existence of Weak Solutions of Boundary Value Problems for Several Classes of Coupled Systems with Impulses[D]. Jiangsu: China University of Mining and Technology, 2017 |
|