Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (5): 1170-1182.
Previous Articles Next Articles
Received:
2018-05-04
Online:
2019-10-26
Published:
2019-11-08
Contact:
Ruifeng Zhang
E-mail:zrf615@henu.edu.cn;ln10475@163.com
Supported by:
CLC Number:
Ruifeng Zhang,Nan Liu. Gradient Flow Method in Nonlinear Optical Lattices[J].Acta mathematica scientia,Series A, 2019, 39(5): 1170-1182.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Abdullaev F K , Gammal A , Tomio L , Frederico T . Stability of trapped Bose-Einstein condensates. Phys Rev A, 2001, 63: 043604
doi: 10.1103/PhysRevA.63.043604 |
2 |
Alexander T J , Kivshar Y S . Soliton complexes and flat-top nonlinear modes in optical lattices. Appl Phys B, 2006, 82: 203- 206
doi: 10.1007/s00340-005-2071-3 |
3 |
Bednář J . Solitons in radiation chemistry and biology. J Radioanal Nucl Ch, 1989, 133: 185- 197
doi: 10.1007/BF02060490 |
4 | Campbell D , Flach S , Kivshar Y S . Localizing energy through nonlinearity and discreteness. Phys Today, 2004, 57: 43- 49 |
5 |
Cavaterra C , Rocca E , Wu H , Xu X . Global strong solutions of the full Navier-Stokes and Q-tensor system for nematic liquid crystal flows in two dimensions. SIAM J Math Anal, 2016, 48: 1368- 1399
doi: 10.1137/15M1048550 |
6 |
Chen Q . Maximum principles, uniqueness and existence for harmonic maps with potential and Landau-Lifshitz equations. Calc Var, 1999, 8: 91- 107
doi: 10.1007/s005260050118 |
7 |
Chen Y F , Beckwitt K , Wise F W , Malomed B A . Criteria for experimental observation of multidimensional optical solitons in saturable Kerr media. Phys Rev E, 2004, 70: 046610
doi: 10.1103/PhysRevE.70.046610 |
8 |
Chill R . On the Lojasiewicz-Simon gradient inequality. J Funct Anal, 2003, 201: 572- 601
doi: 10.1016/S0022-1236(02)00102-7 |
9 |
Chill R , Haraus A , Jendoubi M A . Applications of the Lojasiewicz-Simon gradient inequality to gradientlike evolution equations. Anal Appl, 2009, 7: 351- 372
doi: 10.1142/S0219530509001438 |
10 |
Christodoulides D N , Joseph R I . Discrete self-focusing in nonlinear arrays of coupled waveguides. Opt Lett, 1988, 13: 794- 796
doi: 10.1364/OL.13.000794 |
11 |
Christodoulides D N , Lederer F , Siberberg Y . Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature, 2003, 424: 817- 823
doi: 10.1038/nature01936 |
12 |
Cortázar C , Pino M D , Elgueta M . The problem of uniqueness of the limit in a semilinear heat equation. Comm Partial Differential Equations, 1999, 24: 2147- 2172
doi: 10.1080/03605309908821497 |
13 | Dacorogna B . Direct Methods in the Calculus of Variations. New York: Springer, 2007 |
14 |
Desyatnikov A S , Kivshar Y S , Torner L . Optical vortices and vortex solitons. Prog Opt, 2005, 47: 291- 391
doi: 10.1016/S0079-6638(05)47006-7 |
15 |
Dong L W , Wang J D , Wang H , Yin G Y . Bessel lattice solitons in competing cubic-quintic nonlinear media. Phys Rev A, 2009, 79: 013807
doi: 10.1103/PhysRevA.79.013807 |
16 |
Dong L W , Wang H , Zhou W D , et al. Necklace solitons and ring solitons in Bessel optical lattices. Opt Express, 2008, 16: 5649- 5655
doi: 10.1364/OE.16.005649 |
17 |
Dong L W , Ye F W . Shaping solitons by lattice defects. Phys Rev A, 2010, 82: 053829
doi: 10.1103/PhysRevA.82.053829 |
18 |
Eells J , Sampson J M . Harmonic mappings of Riemannian manifolds. Amer J Math, 1964, 86: 109- 160
doi: 10.2307/2373037 |
19 |
Eisenberg H S , Silberberg Y , Morandotti R , et al. Discrete Spatial Optical Solitons in Waveguide Arrays. Phys Rev Lett, 1998, 81: 3383- 3386
doi: 10.1103/PhysRevLett.81.3383 |
20 |
Fleischer J W , Bartal G , Cohen O , et al. Observation of vortex-ring "discrete" solitons in 2D photonic lattices. Phys Rev Lett, 2004, 92: 123904
doi: 10.1103/PhysRevLett.92.123904 |
21 |
Fleischer J W , Segev M , Efremidis N K , Christodoulides D N . Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature, 2003, 422: 147- 150
doi: 10.1038/nature01452 |
22 | Haraux A , Jendoubi M A . Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity. Asymptot Anal, 2001, 26: 21- 36 |
23 |
Jendoubi M A . A simple unified approach to some convergence theorem of L. Simon. J Funct Anal, 1998, 153: 187- 202
doi: 10.1006/jfan.1997.3174 |
24 |
Kartashov Y V , Ferrando A , Egorov A A , Torner L . Soliton topology versus discrete symmetry in optical lattices. Phys Rev Lett, 2005, 95: 123902
doi: 10.1103/PhysRevLett.95.123902 |
25 |
Kartashov Y V , Malomed B A , Torner L . Solitons in nonlinear lattices. Rev Modern Phys, 2011, 83: 247- 305
doi: 10.1103/RevModPhys.83.247 |
26 |
Kartashov Y V , Vysloukh V A , Torner L . Rotary solitons in Bessel optical lattices. Phys Rev Lett, 2004, 93: 093904
doi: 10.1103/PhysRevLett.93.093904 |
27 | Kartavenko V G . Soliton-like solutions in nuclear hydrodynamics. Sov J Nucl Phys, 1984, 40: 240- 246 |
28 | Lederer F , Silberberg Y . Discrete solitons. Opt Photon News, 2002, 13: 48- 53 |
29 |
Marinov K , Wang T Z , Yang Y S . On a vegetation pattern formation model governed by a nonlinear parabolic system. Nonlinear Anal RWA, 2013, 14: 507- 525
doi: 10.1016/j.nonrwa.2012.07.012 |
30 |
Neshev D N , Alexander T J , Ostrovskaya E A , et al. Observation of discrete vortex solitons in optically induced photonic lattices. Phys Rev Lett, 2004, 92: 123903
doi: 10.1103/PhysRevLett.92.123903 |
31 | Rossi R , Savare G . Gradient flows of non convex functionals in Hilbert spaces and applications. ESAIM: COCV, 2006, 12: 564- 614 |
32 |
Shen W X , Zheng S M . On the coupled Cahn-Hilliard equations. Comm Partial Differential Equations, 1993, 18: 701- 727
doi: 10.1080/03605309308820946 |
33 |
Simon L . Asymptotics for a class of nonlinear evolution equation with applications to geometric problems. Ann Math, 1983, 118: 525- 571
doi: 10.2307/2006981 |
34 | Wu H . Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows. Discrete Contin Dyn Syst, 2010, 26: 379- 396 |
35 |
Wu H , Xu X , Liu C . Asymptotic behavior for a nematic liquid crystal model with different kinematic transport properties. Calc Var, 2012, 45: 319- 345
doi: 10.1007/s00526-011-0460-5 |
36 |
Yang J K , Musslimani Z H . Fundamental and vortex solitons in a two-dimensional optical lattice. Opt Lett, 2003, 28: 2094- 2096
doi: 10.1364/OL.28.002094 |
37 |
Yang Y S , Zhang R F . Steady state solutions for nonlinear Schrödinger equation arising in optics. J Math Phys, 2009, 50: 053501
doi: 10.1063/1.3122774 |
38 |
Yang Y S , Zhang R F . Existence of optical vortices. SIAM J Math Anal, 2014, 46: 484- 498
doi: 10.1137/120894105 |
39 | Zheng S M . Nonlinear Evolution Equations. Boca Raton: Chapman & Hall/CRC, 2004 |
40 |
Zheng J B , Dong L W . Multipeaked fundamental and vortex solitons in azimuthally modulated Bessel lattices. J Opt Soc Am B, 2011, 28: 780- 786
doi: 10.1364/JOSAB.28.000780 |
41 |
Zhou C T , He X T . Stochastic diffusion of electrons in evolution Langmuir fields. Phys Scr, 1994, 50: 415- 418
doi: 10.1088/0031-8949/50/4/015 |
42 |
Zhou J , Qi Y H , Xue C H , et al. Different discrete soliton states in periodic optical induced waveguide lattice. Opt Express, 2007, 15: 6232- 6240
doi: 10.1364/OE.15.006232 |
[1] | Yanfang Mei,Youjun Wang. Three Types of Solutions for a Class of Nonlinear Schrödinger Equations [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1087-1093. |
[2] | Wen Qiu,Yimin Zhang,Ahmed Adam Abdelgadir. Existence of Nontrivial Solutions for a Class of Relativistic Nonlinear Schrödinger Equations [J]. Acta mathematica scientia,Series A, 2019, 39(1): 95-104. |
[3] | Danni Wang,Hongli Yang,Liangui Yang. Derivation of a Higher Order Nonlinear Schrödinger Equation with Complete Coriolis Force [J]. Acta mathematica scientia,Series A, 2018, 38(5): 883-892. |
[4] | Wenbo Wang,Quanqing Li. Existence and Concentration of Nontrivial Solutions for the Fractional Schrödinger Equations with Sign-Changing Steep Well Potential [J]. Acta mathematica scientia,Series A, 2018, 38(5): 893-902. |
[5] | GENG Yong-Cai. Steady State Solutions of Relativistic Euler Equations with Spherical Symmetry [J]. Acta mathematica scientia,Series A, 2014, 34(4): 841-850. |
|