Zeros of Abelian Integral for a Kind of Hamiltonian Systems
Jihua Yang1,*(),Erli Zhang2
1 School of Mathematics and Computer Science, Ningxia Normal University, Ningxia Guyuan 756000 2 School of Information Engineering, Zhengzhou Institute of Finance and Economics, Zhengzhou 450001
the NSFC(11701306);the NSFC(11601250);the Construction of First-class Disciplines of Higher Education of Ningxia (pedagogy)(NXYLXK2017B11);the Young Top-Notch Talent of Ningxia and Training Plan of University Young Key Teacher of Henan Province(2017GGJS202);the Young Top-Notch Talent of Ningxia and Training Plan of University Young Key Teacher of Henan Province(2016GGJS190)
Arnold V . Ten problems in:Theory of singularities and its applications. Adv Soviet Math, 1990, 1: 1- 8
2
Horozov E , Iliev I . Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians. Nonlinearity, 1998, 11: 1521- 1537
doi: 10.1088/0951-7715/11/6/006
3
Zhao Y , Zhang Z . Linear estimate of the number of zeros of Abelian integrals for a kind of quartic Hamiltonians. J Differential Equations, 1999, 155: 73- 88
doi: 10.1006/jdeq.1998.3581
4
Zhou X , Li C . On the algebraic structure of Abelian integrals for a kind of pertubed cubic Hamiltonian systems. J Math Anal Appl, 2009, 359: 209- 215
doi: 10.1016/j.jmaa.2009.05.034
5
Wu J , Zhang Y , Li C . On the number of zeros of Abelian integrals for a kind of quartic Hamiltonians. Appl Math Comput, 2014, 228: 329- 335
6
Zhao L , Qi M , Liu C . The cylicity of period annuli of a class of quintic Hamiltonian systems. J Math Anal Appl, 2013, 403: 391- 407
doi: 10.1016/j.jmaa.2013.02.016
7
Yang J , Zhao L . Zeros of Abelian integrals for a quartic Hamiltonian with figure-of-eight loop through a nilpotent saddle. Nonlinear Anal RWA, 2016, 27: 350- 365
doi: 10.1016/j.nonrwa.2015.08.005
8
Gavrilov L , Iliev I . Quadratic perturbations of quadratic codimension-four centers. J Math Anal Appl, 2009, 357: 69- 76
doi: 10.1016/j.jmaa.2009.04.004