Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (5): 1033-1040.
Previous Articles Next Articles
Siqian Qin,Zhengqiu Ling*(),Zewen Zhou
Received:
2018-09-05
Online:
2019-10-26
Published:
2019-11-08
Contact:
Zhengqiu Ling
E-mail:lingzq00@163.com
Supported by:
CLC Number:
Siqian Qin,Zhengqiu Ling,Zewen Zhou. Some Methods for Determining the Lower Bound of Blow-up Time in a Parabolic Problem and Effectiveness Analysis[J].Acta mathematica scientia,Series A, 2019, 39(5): 1033-1040.
1 | Quittner R, Souplet P. Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States. Basel: Birkhauser, 2007 |
2 | Straughan B. Explosive Instabilities in Mechamics. Berlin: Springer-Verlag, 1998 |
3 |
Payne L E , Schaefer P W . Lower bounds for blow-up time in parabolic problems under Dirichlet conditions. J Math Anal Appl, 2007, 328: 1196- 1205
doi: 10.1016/j.jmaa.2006.06.015 |
4 |
Payne L E , Philippin G A , Schaefer P W . Bounds for blow-up time in nonlinear parabolic problems. J Math Anal Appl, 2008, 338: 438- 447
doi: 10.1016/j.jmaa.2007.05.022 |
5 |
Payne L E , Philippin G A , Schaefer P W . Blow-up phenomena for some nonlinear parabolic problems. Nonlinear Anal, 2008, 69: 3495- 3502
doi: 10.1016/j.na.2007.09.035 |
6 | Liu D M , Mu C L , Xin Q . Lower bounds estimate for the blow-up time of a nonlinear nonlocal porous medium equation. Acta Math Sci, 2012, 32B (3): 1206- 1212 |
7 | Song X F , Lv X S . Bounds of blowup time and blowup rate estimates for a type of parabolic equations with weighted source. Appl Math & Computation, 2014, 236: 78- 92 |
8 | Baghaei K , Hesaaraki M B . Lower bounds for the blow-up time of nonlinear parabolic problems with Robin boundary conditions. Electron J Differential Equations, 2014, 113: 1- 5 |
9 |
马羚未, 方钟波. 具有加权非局部源和Robin边界条件的反应-扩散方程解的爆破时间下界. 数学物理学报, 2017, 37A (1): 146- 157
doi: 10.3969/j.issn.1003-3998.2017.01.014 |
Ma L W , Fang Z B . Lower bounds of blow-up time for a reaction-diffusion equation with weighted nonlocal sources and Robin type boundary conditions. Acta Math Sci, 2017, 37A (1): 146- 157
doi: 10.3969/j.issn.1003-3998.2017.01.014 |
|
10 |
Baghaei K , Ghaemi M B , Hesaaraki M . Lower bounds for the blow-up time in a semilinear parabolic problem involving a variable source. Appl Math Letters, 2014, 27: 49- 52
doi: 10.1016/j.aml.2013.07.012 |
11 | Payne L E , Schaefer P W . Lower bounds for blow-up time in parabolic problems under Neumann conditions. Appl Anal, 2006, 85: 1301- 1311 |
[1] | Yafeng Li,Qiao Xin,Chunlai Mu. The Discrete Possion Equation and the Heat Equation with the Exponential Nonlinear Term [J]. Acta mathematica scientia,Series A, 2019, 39(4): 773-784. |
[2] | Qunfei Long,Jianqing Chen. Blow-Up Phenomena of Solutions for a Class of Viscous Cahn-Hilliard Equation with Gradient Dependent Potentials and Sources [J]. Acta mathematica scientia,Series A, 2019, 39(3): 510-517. |
[3] | Ting Ji,Lianggen Hu,Jing Zeng. The Non-Existence of Non-Radial Blow-Up Solutions for the Quasilinear Elliptic System [J]. Acta mathematica scientia,Series A, 2019, 39(2): 307-315. |
[4] | Zhaoyang Shang. Blow-Up Criterion for Incompressible Magnetohydrodynamics Equations in Besov Space [J]. Acta mathematica scientia,Series A, 2019, 39(1): 67-80. |
[5] | Yijun He,Huaihong Gao,Hua Wang,Shunyong Li. A Note on Global Solution and Blow-Up for a Class of Pseudo p-Laplacian Evolution Equations with Logarithmic Nonlinearity [J]. Acta mathematica scientia,Series A, 2019, 39(1): 125-132. |
[6] | Baoyan Sun. Lower Bound of Blow-Up Time for a p-Laplacian Equation with Nonlocal Source [J]. Acta mathematica scientia,Series A, 2018, 38(5): 911-923. |
[7] | Zhao Yuanzhang, Ma Xiangru. Blow-Up Analysis for a Nonlocal Reaction-Diffusion Equation with Variant Diffusion Coefficient [J]. Acta mathematica scientia,Series A, 2018, 38(4): 750-769. |
[8] | Liu Dengming, Zeng Xianzhong, Mu Chunlai. A Blow-up Result for a Higher-Order Damped Hyperbolic System with Nonlinear Memory Terms [J]. Acta mathematica scientia,Series A, 2018, 38(2): 304-312. |
[9] | Su Xiao, Wang Shubin. Finite Time Blow-Up for the Damped Semilinear Wave Equations with Arbitrary Positive Initial Energy [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1085-1093. |
[10] | Ma Lingwei, Fang Zhongbo. Lower Bounds of Blow-up Time for a Reaction-Diffusion Equation with Weighted Nonlocal Sources and Robin Type Boundary Conditions [J]. Acta mathematica scientia,Series A, 2017, 37(1): 146-157. |
[11] | Liu Yang. Potential Well and Application to Non-Newtonian Filtration Equations at Critical Initial Energy Level [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1211-1220. |
[12] | Yang Lingyan, Li Xiaoguang, Chen Ying. A Sharp Threshold of Blow-Up of a Class of Schrödinger-Hartree Equations [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1117-1123. |
[13] | Ling Zhengqiu, Wang Zejia. Blow-Up Questions of Solutions to a Class of p-Laplace Equation with Dissipative Gradient Term [J]. Acta mathematica scientia,Series A, 2016, 36(5): 958-964. |
[14] | Bian Dongfen, Tang Tong. Blow-Up of Smooth Solutions to the Compressible MHD Equations [J]. Acta mathematica scientia,Series A, 2016, 36(4): 715-721. |
[15] | He Yue. New Estimates of Lower Bound for the First Eigenvalue on Compact Manifolds with Positive Ricci Curvature [J]. Acta mathematica scientia,Series A, 2016, 36(2): 215-230. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 145
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 67
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|