Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (4): 785-796.
Previous Articles Next Articles
Received:
2017-09-15
Online:
2019-08-26
Published:
2019-09-11
Contact:
Runjie Li
E-mail:yang0915@hnu.edu.cn
Supported by:
CLC Number:
Chao Yang,Runjie Li. Existence and Stability of Periodic Solution for a Lasota-Wazewska Model with Discontinuous Harvesting[J].Acta mathematica scientia,Series A, 2019, 39(4): 785-796.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Wazewska-Czyzewska , Maria , Lasota , et al. Mathematical problems of the dynamics of a system of red blood cells. Mat Stos, 1976, 6 (3): 23- 40 |
2 | Long Z . Global asymptotic stability of pseudo almost periodic solutions to a Lasota-Wazewska model with distributed delays. Electronic Journal of Qualitative Theory of Differential Equations, 2015, 2015 (51): 1- 3 |
3 | Duan L , Huang L , Chen Y . Global exponential stability of periodic solutions to a delay Lasota-Wazewska model with discontinuous harvesting. Proceedings of the American Mathematical Society, 2016, 144 (2): 561- 573 |
4 | Fink A . Almost Periodic Differential Equations. Berlin: Springer, 1974 |
5 | Clark C . The optimal management of renewable resources. Natural Resource Modelling, 1990, 43 (1): 31- 52 |
6 |
Martin A , Ruan S . Predator-prey models with delay and prey harvesting. Journal of Mathematical Biology, 2001, 43 (3): 247- 267
doi: 10.1007/s002850100095 |
7 |
Xiao D , Jennings L . Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting. SIAM Journal on Applied Mathematics, 2005, 65 (3): 737- 753
doi: 10.1137/S0036139903428719 |
8 |
Pei Y , Lv Y , Li C . Evolutionary consequences of harvesting for a two-zooplankton one-phytoplankton system. Applied Mathematical Modelling, 2012, 36 (4): 1752- 1765
doi: 10.1016/j.apm.2011.09.015 |
9 |
Costa M , Meza M . Dynamical stabilization of grazing systems:An interplay among plant-water interaction, overgrazing and a threshold management policy. Mathematical Biosciences, 2006, 204 (2): 250- 259
doi: 10.1016/j.mbs.2006.05.010 |
10 |
Bischi G , Lamantia F , Tramontana F . Sliding and oscillations in fisheries with on-off harvesting and different switching times. Communications in Nonlinear Science and Numerical Simulation, 2014, 19 (1): 216- 229
doi: 10.1016/j.cnsns.2013.05.023 |
11 | Huang L , Wu J . The role of threshold in preventing delay-induced oscillations of frustrated neural networks with McCulloch-Pitts nonlinearity. International Journal of Mathematics, Game Theory and Algebra, 2001, 11 (6): 71- 100 |
12 | Filippov A . Differential equations with discontinuous right-hand sides and differential inclusions. Nonlinear Analysis and Nonlinear Differential Equations, 1988, 154 (2): 265- 288 |
13 |
Adhikari S , Yang C , Kim H , et al. Memristor bridge synapse-based neural network and its learning. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23 (9): 1426- 1435
doi: 10.1109/TNNLS.2012.2204770 |
14 |
Chua L . Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 1971, 18 (5): 507- 519
doi: 10.1109/TCT.1971.1083337 |
15 | Sprott J . A new class of chaotic circuit. Physics Letters A, 2000, 266 (1): 19- 23 |
16 |
Chen G , Ueta T . Yet another chaotic attractor. International Journal of Bifurcation and Chaos, 1999, 9 (7): 1465- 1466
doi: 10.1142/S0218127499001024 |
17 |
Liang Z . Asymptotically periodic solutions of a class of second order nonlinear differential equations. Proceedings of the American Mathematical Society, 1987, 99 (4): 693- 699
doi: 10.1090/S0002-9939-1987-0877042-9 |
18 | Li J , Wang Z . Existence and global attractivity of positive periodic solutions of a survival model of red blood cells. Computers and Mathematics with Applications, 2005, 50 (1/2): 41- 47 |
19 | Xu W , Li J . Global attractivity of the model for the survival of red blood cells with several delays. Annals of Differential Equations, 1998, 14 (2): 259- 265 |
20 |
Wang J , Fec M , Zhou Y . Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations. Communications in Nonlinear Science and Numerical Simulation, 2013, 18 (2): 246- 256
doi: 10.1016/j.cnsns.2012.07.004 |
21 | Zhang C . Almost Periodic Type Functions and Ergodicity. Berlin: Springer, 2009 |
22 | Zhang C . Pseudo almost periodic solutions of some differential equations. Journal of Mathematical Analysis and Applications, 1994, 181 (1): 62- 76 |
23 | Filippov A . Differential Equations with Discontinuous Righthand Sides:Control Systems. New York: Springer Science and Business Media, 1988 |
24 | 黄立宏, 郭振远, 王佳伏. 右端不连续微分方程理论与应用. 北京: 科学出版社, 2011 |
Huang L , Guo Z , Wang J . Theory and Application of Right end Discontinuous Differential Equations. Beijing: Science Press, 2011 | |
25 | 张海, 郑祖庥, 蒋威. 非线性分数阶泛函微分方程解的存在性. 数学物理学报, 2011, 31A (2): 289- 297 |
Zhang H , Zheng Z , Jiang W . Existence of solutions for nonlinear fractional functional differential equations. Acta Mathematica Scientia, 2011, 31A (2): 289- 297 | |
26 | 鲁红英, 王克. 具周期系数的单种群模型及其最优捕获策略. 数学物理学报, 2005, 25A (6): 176- 182 |
Lu H , Wang K . Single population model with periodic coefficients and its optimal harvesting strategy. Acta Mathematica Scientia, 2005, 25A (6): 176- 182 | |
27 | Aubin J , Cellina A . Differential Inclusions. Berlin: Springer-Verlag, 1984: 8- 13 |
28 |
Forti M , Nistri P . Global convergence of neural networks with discontinuous neuron activations. IEEE Transactions on Circuits and Systems Ⅰ:Fundamental Theory and Applications, 2003, 50 (11): 1421- 1435
doi: 10.1109/TCSI.2003.818614 |
29 |
Forti M , Grazzini M , Nistri P , et al. Generalized Lyapunov approach for convergence of neural networks with discontinuous or non-Lipschitz activations. Physica D:Nonlinear Phenomena, 2006, 214 (1): 88- 99
doi: 10.1016/j.physd.2005.12.006 |
30 |
Yan J . Existence and global attractivity of positive periodic solution for an impulsive Lasota-Wazewska model. Journal of Mathematical Analysis and Applications, 2003, 279 (1): 111- 120
doi: 10.1016/S0022-247X(02)00613-3 |
31 | Wang D , Huang L . Periodicity and multi-periodicity of generalized Cohen-Grossberg neural networks via functional differential inclusions. Nonlinear Dynamics, 2016, 1- 20 |
32 | Hamaya Y . Almost periodic dynamic of a discrete Wazewska-Lasota model. Communications in Mathematics and Applications, 2013, 4 (3): 189- 199 |
33 | Liu G , Yan W , Yan J . Periodic solutions for a class of neutral functional differential equations with infinite delay. Nonlinear Analysis:Theory, Methods and Applications, 2009, 71 (1): 604- 613 |
34 |
Saker S . Oscillation and global attractivity in hematopoiesis model with periodic coefficients. Applied Mathematics and Computation, 2003, 142 (2): 477- 494
doi: 10.1016/S0096-3003(02)00315-6 |
35 |
Liu X , Meng J . The positive almost periodic solution for Nicholson-type delay systems with linear harvesting terms. Applied Mathematical Modelling, 2012, 36 (7): 3289- 3298
doi: 10.1016/j.apm.2011.09.087 |
36 | Fan M , Wang K . Global existence of positive periodic solutions of periodic predator-prey system with infinite delays. Journal of Mathematical Analysis and Applications, 2001, 262 (1): 1- 11 |
37 |
Liu M , Wang K . Global asymptotic stability of a stochastic Lotka-Volterra model with infinite delays. Communications in Nonlinear Science and Numerical Simulation, 2012, 17 (8): 3115- 3123
doi: 10.1016/j.cnsns.2011.09.021 |
|