Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (4): 797-811.
Previous Articles Next Articles
Zhiyu Zhang1(),Yuanhong Yu2,Shuping Li3,Shizhu Qiao1
Received:
2017-08-15
Online:
2019-08-26
Published:
2019-09-11
Supported by:
CLC Number:
Zhiyu Zhang,Yuanhong Yu,Shuping Li,Shizhu Qiao. Oscillation of Second Order Nonlinear Differential Equations with Neutral Delay[J].Acta mathematica scientia,Series A, 2019, 39(4): 797-811.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Dzurina J, Stavroulakis I P. Oscillation criteria for second order delay differentional equations. Appl Math Comput, 2003, 140:445-453<br /> |
[2] | Sun Y G, Meng F W. Note on the paper of Dzurina and Stavroulakis. Appl Math Comput, 2006, 174:1634-1641<br /> |
[3] | Dong J G. Oscillation behavior of second-order nonlinear neutral differential equtions with deviating arguments. Comput Math Appl, 2010, 59:3710-3717<br /> |
[4] | Erbe L, Hassan T S, Peterson A. Oscillation of second-order neutral differential equations. Adv Dynam Syst Appl, 2008, 3:53-71<br /> |
[5] | Li T,Han Z, Zhang C, Sun S. On the oscillation of second order Emden-Fowler neutral differential equations. J Appl Math Comput, 2011, 37:601-610<br /> |
[6] | Liu H D, Meng F W, Liu P H. Oscillation and asymptotic analysis on a new generalized Emden-Fowler equation. Appl Math Comput, 2012, 219:2739-2748<br /> |
[7] | 曾云辉, 罗李平, 俞元洪.中立型Emden-Fowler时滞微分方程的振动性.数学物理学报, 2015, 35A(4):803-814 Zeng Y H, Luo L P, Yu Y H. Oscillation for Emden-Fowler Delay differential equations of neutral type. Acta Math Sci, 2015, 35A(4):803-814<br /> |
[8] | Agarwal R P, Shieh S L, Yeh C C. Oscillation criteria for second order retarded differential equations. Math Comput Modelling, 1997, 26:1-11<br /> |
[9] | Baculikova B, Li T, Dzurina J. Oscillation theorems for second order supper-linear neutral differential equations. Math Slovaca, 2013, 63:123-134<br /> |
[10] | Liu L,Bai Y. New oscillation criteria for second order nonlinear delay neutral differential equations. J Comput Appl Math, 2009, 231:657-663<br /> |
[11] | Wang X L, Meng F W. Oscillation criteria of second order quasi-linear neutral delay differential equations. Math Comput Modelling, 2007, 46:415-421<br /> |
[12] | Xu R, Meng F W. Oscillation criteria for second order quasi-linear neutral delay differential equations. Appl Math Comput, 2007, 192:216-222<br /> |
[13] | Tiryaki A. Oscillation criteria for a certain second order nonlinear differential equations with deviating arguments. Electron J Qual Theory Differ Equa, 2009, 61:1-11<br /> |
[14] | Hasanbulli M, Rogovchenko Yu V. Oscillation criteria for second order nonlinear neutral differential equations. Appl Math Comput, 2010, 215:4392-4399<br /> |
[15] | Li T, Rogovchenko Yu V, Zhang C. Oscillation of second order nonlinear neutral differential equations. Funkc Ekvacioj, 2013, 56:111-120<br /> |
[16] | Ye L, Xu Z. Oscillation criteria for second order quasi-linear neutral delay differential equations. Appl Math Comput, 2009, 207:388-396<br /> |
[17] | Qin H, Shang N, Lu Y. A note on oscillation criteria of second order nonlinear neutral delay differential equations. Comput Math Appl, 2008, 56:2987-2992<br /> |
[18] | Lin X. Oscillation of second order nonlinear neutral differential equations. J Math Anal Appl, 2005, 309:442-452<br /> |
[19] | Karpuz B, Manojlovic J V, Ocalan O, Shoukaku Y. Oscillation criteria for a class of second order neutral delay differential equations. Appl Math Comput, 2009, 210:303-312<br /> |
[20] | Baculikova B, Dzurina J. Oscillation theorems for second order nonlinear neutral differential equations. Comput Math Appl, 2011, 62:4472-4478<br /> |
[21] | Leighton W. The detection of the oscillation of solutions of a second order linear differential equation. Duke Math J, 1950, 17:57-62<br /> |
[22] | Philos C G. Oscillation theorems for linear differential equations of second order. Arch Math, 1989, 53:482-492<br /> |
[23] | 曾云辉, 罗李平, 俞元洪. 广义中立型Emden-Fowler方程的振动准则.数学物理学报,2016, 36A(6):1067-1081 Zeng Y H, Luo L P,Yu Y H. Oscillation criteria for generalized neutral Emden-Fowler equations. Acta Math Sci, 2016, 36A(6):1067-1081<br /> |
[24] | 罗红英, 屈英, 俞元洪. 具有正负系数的二阶中立型时滞Emden-Fowler方程的振动准则.应用数学学报, 2017, 40A(5):667-675 Luo H Y,Qu Y,Yu Y H. Oscillation criteria of second order neutral delay Emden-Fowler equations with positive and negative coefficients. Acta Math Appl Sinica, 2017, 40A(5):667-675<br /> |
[25] | 李文娟, 汤获, 俞元洪. 中立型Emden-Fowler微分方程的振动性.数学物理学报,2017, 37A(6):1062-1069 Li W J,Tang H, Yu Y H. Osillation of the Emden-Fowler differential equations.Acta Math Sci, 2017, 37A(6):1062-1069<br /> |
[26] | 杨甲山, 李同兴. 时间模上一类二阶阻尼Emden-Fowler型动态方程的振荡性.数学物理学报,2018, 38A(1):134-155 Yang J S,Li T X. Osillation for a class of second-order damped Emden-Fowler dynamic equations on time scalas. Acta Math Sci, 2018, 38A(1):134-155<br /> |
[27] | 张晓建. 具有非线性中立项的广义Emden-Fowler微分方程的振动性.数学物理学报,2018, 38A(4):728-739 Zhang X J. Osillation of generalized Emden-Fowler differential equations with nonlinear neutral term. Acta Math Sci, 2018, 38A(4):728-739 |
[1] | Qinghua Zhou,Li Wan,Jie Liu. Global Attracting Set for Neutral Type Hopfield Neural Networks with Time-Varying Delays [J]. Acta mathematica scientia,Series A, 2019, 39(4): 823-831. |
[2] | Wenjuan Li,Shuhai Li,Yuanhong Yu. Oscillation of Second Order Nonlinear Neutral Differential Equations with Distributed Delay [J]. Acta mathematica scientia,Series A, 2019, 39(4): 812-822. |
[3] | Gengen Zhang,Wansheng Wang,Aiguo Xiao. Asymptotic Estimation of the Trapezoidal Method for a Class of Neutral Differential Equation with Variable Delay [J]. Acta mathematica scientia,Series A, 2019, 39(3): 560-569. |
[4] | Haibo Gu,Caixia Gao. Razumikhin-Type Theorems on P-th Moment and Almost Sure Stability of Neutral Stochastic Switched Nonlinear Systems [J]. Acta mathematica scientia,Series A, 2018, 38(5): 970-983. |
[5] | Wang Huiling, Gao Jianfang. Oscillation Analysis of Analytical Solutions for a Kind of Nonlinear Neutral Delay Differential Equations with Several Delays [J]. Acta mathematica scientia,Series A, 2018, 38(4): 740-749. |
[6] | Zhang Xiaojian. Oscillation of Generalized Emden-Fowler Differential Equations with Nonlinear Neutral Term [J]. Acta mathematica scientia,Series A, 2018, 38(4): 728-739. |
[7] | Wang Wansheng, Zhong Peng, Zhao Xinyang. Long-Time Stability of Nonlinear Neutral Differential Equations with Variable Delay [J]. Acta mathematica scientia,Series A, 2018, 38(1): 96-109. |
[8] | Yang Jiashan, Li Tongxing. Oscillation for a Class of Second-Order Damped Emden-Fowler Dynamic Equations on Time Scales [J]. Acta mathematica scientia,Series A, 2018, 38(1): 134-155. |
[9] | Li Wenjuan, Tang Huo, Yu Yuanhong. Oscillation of the Neutral Emden-Fowler Differential Equation [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1062-1069. |
[10] | Zeng Yunhui, Luo Liping, Yu Yuanhong. Oscillation Criteria for Generalized Neutral Emden-Fowler Equations [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1067-1081. |
[11] | Zeng Yunhui, Luo liping, Yu Yuanhong. Oscillation for Emden-Fowler Delay Differential Equations of Neutral Type [J]. Acta mathematica scientia,Series A, 2015, 35(4): 803-814. |
[12] | Luo Ricai, Xu Honglei, Wang Wusheng. Globally Asymptotic Stability of A New Class of Neutral Neural Networks with Time-Varying Delays [J]. Acta mathematica scientia,Series A, 2015, 35(3): 634-640. |
[13] | Diem Dang Huan, Gao Hongjun. Well-Posedness for Fractional Neutral Impulsive Stochastic Integro-Differential Equations [J]. Acta mathematica scientia,Series A, 2015, 35(2): 405-421. |
[14] | YANG Jia-Shan. Oscillation Criteria for Second-Order Dynamic Equations with Positive and Negative Coefficients and Damping on Time Scales [J]. Acta mathematica scientia,Series A, 2014, 34(2): 393-408. |
[15] | SHU Xiao-Bao, DAI Bin-Xiang. S-asymptotically ω-periodic Solutions of Semi-linear Neutral Fractional Differential Equations [J]. Acta mathematica scientia,Series A, 2014, 34(1): 16-26. |
|