Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (3): 501-509.
Previous Articles Next Articles
Xue Zhang1,2(),Yuhuai Sun1,*()
Received:
2017-01-25
Online:
2019-06-26
Published:
2019-06-27
Contact:
Yuhuai Sun
E-mail:1443773002@qq.com;sunyuhuai63@163.com
Supported by:
CLC Number:
Xue Zhang,Yuhuai Sun. Dynamical Analysis and Traveling Wave Solutions for Generalized (3+1)-Dimensional Kadomtsev-Petviashvili Equation[J].Acta mathematica scientia,Series A, 2019, 39(3): 501-509.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Adair D , Jaeger M . Simulation of tapered rotating beams with centrifugal stiffening using the adomian decomposition method. Applied Mathematical Modelling, 2016, 40: 3230- 3241
doi: 10.1016/j.apm.2015.09.097 |
2 |
Hasseine A , Bart H J . Adomian decomposition method solution of population balance equations for aggregation, nucleation, growth and breakup processes. Applied Mathematical Modelling, 2015, 39: 1975- 1984
doi: 10.1016/j.apm.2014.09.027 |
3 |
Aski F S , Seyed J N , Mohammadian E , Asgari A . Application of adomian decomposition method for micropolor flow in a porous channel. Propulsion and Power Research, 2014, 3: 15- 21
doi: 10.1016/j.jppr.2014.01.004 |
4 |
Reza M . Numerical solution of the Laplace equation in annulus by Adomian decomposition method. Chaos Solitons and Fractals, 2008, 36: 138- 143
doi: 10.1016/j.chaos.2006.06.016 |
5 |
Ein M S . Hierarchy of kissing numbers for exceptional Lie symmetry groups in high energy physics. Chaos Solitons and Fractals, 2008, 35: 420- 422
doi: 10.1016/j.chaos.2007.06.121 |
6 | Biswas A , Yildirim A , Hayat T , et al. Soliton perturbation theory for the generalized klein-gordon equation with full nonlinearity. Proceedings of the Romanian Academy, 2012, 13: 32- 41 |
7 |
Hutchinson A J , Mason D P . Lie symmetry methods applied to the turbulent wake of a symmetric self-propelled body. Applied Mathematical Modelling, 2016, 40: 3062- 3080
doi: 10.1016/j.apm.2015.10.007 |
8 | Song M , Rong Z L , Essaid Z , Anjan B . Singular solitons and bifurcation analysis of quadratic nonlinear klein-gordon equation. Applied Mathematical Information Science, 2013, 4: 1333- 1340 |
9 | Triki H , Yildirim A , Hayat T , et al. Topological and non-topological soliton solutions of the bretherton equation. Proceedings of the Romanian Academy, 2012, 13: 688- 696 |
10 | Triki H , Crutcher S , Yildirim A , et al. Bright and dark solitons of the modified complex ginzburg-landau equation with parabolic and dualpower law nonlinearity. Romanian Reports in Physics, 2012, 64: 367- 380 |
11 |
Chang S H . Convergence of variational iteration method applied two-point diffusion problems. Applied Mathematical Modelling, 2016, 40: 6805- 6810
doi: 10.1016/j.apm.2016.02.024 |
12 |
Salkuyeh D K , Tavakoli A . Interpolated variational iteration method for initial value problems. Applied Mathematical Modelling, 2016, 40: 3979- 3990
doi: 10.1016/j.apm.2015.10.037 |
13 |
Khuri S A , Sayfy A . A novel fixed point scheme proper setting of variational iteration method for BVPs. Applied Mathematical Letter, 2015, 48: 75- 84
doi: 10.1016/j.aml.2015.03.017 |
14 |
Concli F , Gorla C . Numerical modeling of the power losses in geared transmissions: Windage, churning and cavitation simulations with a new integrated approach that drastically reduces the computational effort. Tribology International, 2016, 103: 58- 68
doi: 10.1016/j.triboint.2016.06.046 |
15 |
Zhang M X , Li Y X , Li Y , et al. Numerical simulations on the effect of sloshing on liquid flow maldistribution of randomly packed column. Applied Thermal Engineering, 2017, 112: 585- 594
doi: 10.1016/j.applthermaleng.2016.10.049 |
16 |
Cheshmehzangi A . Multi-spatial environmental performance evaluation towards integrated urban design: A procedural approach with computational simulations. Journal of Cleaner Production, 2016, 139: 1085- 1093
doi: 10.1016/j.jclepro.2016.08.151 |
17 | Kadomtsev B B , Petviashvili V . On the stability of solitary waves in weakly dispersive media. Soviet Physics Doklady, 1970, 15: 539- 541 |
18 |
Li D , Lin J , Liu X . Soliton deflexion for (1+3)-D Kadomtsev-Petviashvili equation. Commun Nonlinear Sci Numer Simul, 2009, 14: 3548- 3553
doi: 10.1016/j.cnsns.2009.02.007 |
19 |
Dorizzi B , Grammaticos B , Ramani A , Winternitz P . Are all the equations of the Kadomtsev-Petviashvili hierarchy integrable?. Journal of Mathematical Physics, 1986, 27: 2848- 2852
doi: 10.1063/1.527260 |
20 | Lv N , Mei J Q , Zhang H Q . New explicit solutions for(3+1)-dimensional Kadomtsev-Petviashvili (KP) equation. International Journal of Nonlinear Science, 2011, 11: 506- 512 |
21 |
Peng Y Z , Krishnan E V . Exact travelling wave solutions to the (3+1)-dimensional Kadomtsev-Petviashvili equation. Acta Physical Polonica, 2005, 108: 421- 428
doi: 10.12693/APhysPolA.108.421 |
22 | Alam M N , Akbar M A . Application of new generalized $(\frac{{G'}}{G})$-expansion method to the (3+1)-dimensional Kadomtsev-Petviashvili equation. Italian Journal of Pure and Applied Mathematics, 2016, 36: 1- 14 |
23 |
Yang R . Bifurcation analysis of a diffusive predator-prey system with Crowley-Martin functional response and delay. Chaos Solitons and Fractals, 2017, 95: 131- 139
doi: 10.1016/j.chaos.2016.12.014 |
24 |
Tang X , Song Y . Bifurcation analysis and Turing instability in a diffusive predator-prey model with herd behavior and hyperbolic mortality. Chaos Solitons and Fractals, 2015, 81: 303- 314
doi: 10.1016/j.chaos.2015.10.001 |
25 | Chow S N , Hale J K . Method of Bifurcation Theory. New York: Springer-Verlag, 1982 |
26 | Guckenheimer J , Homes P . Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. New York: Springer-Verlag, 1999 |
|