Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (3): 484-500.
Previous Articles Next Articles
Changqing Tong1,Jing Zheng2,*()
Received:
2017-01-09
Online:
2019-06-26
Published:
2019-06-27
Contact:
Jing Zheng
E-mail:tongchangqing@hdu.edu.cn
Supported by:
CLC Number:
Changqing Tong,Jing Zheng. Periodic Solutions of a Semi-Linear Klein-Gordon Equations with High Frequencies[J].Acta mathematica scientia,Series A, 2019, 39(3): 484-500.
1 |
Berti M , Bolle P . Periodic solutions of nonlinear wave equations with general nonlinearities. Comm Math Phys, 2003, 243: 315- 328
doi: 10.1007/s00220-003-0972-8 |
2 |
Berti M , Bolle P . Multiplicity of periodic solutions of nonlinear wave equations. Nonlinear Analysis TMA, 2004, 56: 1011- 1046
doi: 10.1016/j.na.2003.11.001 |
3 |
Berti M , Bolle P . Cantor families of periodic solutions for completely resonant nonlinear wave equations. Duke Mathematical Journal, 2006, 134: 359- 419
doi: 10.1215/S0012-7094-06-13424-5 |
4 |
Berti M , Bolle P . Sobolev periodic solutions of nonlinear wave equations in higher spatial dimensions. Arch Rational Mech Anal, 2010, 195: 609- 642
doi: 10.1007/s00205-008-0211-8 |
5 |
Berti M , Bolle P , Procesi M . An abstract Nash-Moser theorem with parameters and applications to PDEs. Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 2010, 27: 377- 399
doi: 10.1016/j.anihpc.2009.11.010 |
6 |
Berti M , Bolle P . Quasi-periodic solutions with Sobolev regularity of NLS on ![]() ![]() doi: 10.4171/JEMS |
7 |
Bourgain J . Construction of periodic solutions of nonlinear wave equations in higher dimension. Geom Funct Anal, 1995, 5: 629- 639
doi: 10.1007/BF01902055 |
8 |
Bourgain J . Quasi-periodic solutions of Hamiltonian perturbations of 2-D linear Schrödinger equations. Ann Math, 1998, 148: 363- 439
doi: 10.2307/121001 |
9 | Bourgain J . Green's Function Estimates for Lattice Schrödinger Operators and Applications. Princeton: Princeton University Press, 2005 |
10 |
Brézis H , Coron J-M , Rabinowitz P . Free vibrations for a semi-linear wave equation and a theorem of P. Rabinowitz. Comm Pure Appl Math, 1980, 33: 667- 684
doi: 10.1002/(ISSN)1097-0312 |
11 |
Brézis H . Periodic solutions of nonlinear vibrating strings and duality principles. Bull Amer Math Soc, 1983, 8: 409- 426
doi: 10.1090/S0273-0979-1983-15105-4 |
12 |
Craig W , Wayne C . Newton's method and periodic solutions of nonlinear wave equations. Comm Pure Appl Math, 1993, 46: 1409- 1498
doi: 10.1002/(ISSN)1097-0312 |
13 |
Delort J M . Periodic solutions of nonlinear Schrödinger equations: A para-differential approach. Analysis and PDE, 2011, 4: 639- 676
doi: 10.2140/apde |
14 |
Fokam J-M . Forced vibrations via Nash-Moser iteration. Comm Math Phys, 2008, 283: 285- 304
doi: 10.1007/s00220-008-0509-2 |
15 | Kuksin S . Hamiltonian perturbabations of infinite-dimensional linear systems with imaginary spectrum. Funktsional Anal i Prilozhen, 1987, 21: 22- 37 |
16 | Kuksin S . Nearly Integrable Infinite-Dimensional Hamiltonian Systems. Berlin: Springer-Verlag, 1993 |
17 |
Rabinowitz P . Periodic solutions of nonlinear hyperbolic partial differential equations. Comm Pure Appl Math, 1967, 20: 145- 205
doi: 10.1002/(ISSN)1097-0312 |
18 | Rabinowitz P . Free vibrations for a semi-linear wave equation. Comm Pure Appl Math, 1978, 31: 31- 68 |
19 |
Wayne E . Periodic and quasi-periodic solutions of nonlinear wave equations. Comm Math Phys, 1990, 127: 479- 528
doi: 10.1007/BF02104499 |
[1] | Ba Na, Tian Fanji, Zheng Lie. C2+α Local Solvability of the k-Hessian Equations [J]. Acta mathematica scientia,Series A, 2017, 37(3): 499-509. |
[2] | WANG Xue-Chen, WEI Jun-Jie. The Effect of Delay on a Diffusive Predator-Prey System with Ivlev-Type Functional Response [J]. Acta mathematica scientia,Series A, 2014, 34(2): 234-250. |
[3] | LI Xiao-Pei. Generalized Homoclinic Solutions for the Stationary Extended Fisher-Kolmogorov Equation [J]. Acta mathematica scientia,Series A, 2014, 34(1): 126-138. |
[4] | YU Jin-Feng, XUE Xiao-Ping. Existence of Periodic Solution for Evolution Inclusion in Banach Space [J]. Acta mathematica scientia,Series A, 2012, 32(1): 126-136. |
[5] | CHEN Zhi-Bin, HUANG Li-Hong. Existence and Uniqueness of Periodic Solutions for a Class of Neutral |Differential System [J]. Acta mathematica scientia,Series A, 2010, 30(4): 1094-1101. |
[6] | YANG Xin-Song, RUI Wei-Guo. Existence and Uniqueness of Positive Periodic Solution for a Kind of Generalized Logistic Model of Single Species [J]. Acta mathematica scientia,Series A, 2009, 29(5): 1442-1452. |
[7] | WANG Kai. Existence of Periodic Solutions for a Type of High Order Neutral Functional Differential Equations [J]. Acta mathematica scientia,Series A, 2009, 29(3): 794-799. |
[8] | Xie Qiangjun; Zhang Guangxin; Zhou Zekui. The Existence of Positive Periodic Solutions for a Kind of Periodic Reaction-diffusion Equations [J]. Acta mathematica scientia,Series A, 2009, 29(2): 465-474. |
[9] | Liu Xiping; Jia Mei; Ren Rui. On the Existence and Uniqueness of Periodic Solutions to a Type [J]. Acta mathematica scientia,Series A, 2007, 27(1): 37-044. |
[10] | Gan Zaihui ;Zhang Jian. Standing Waves for a Class of Coupled Nonlinear Klein-Gordon Equations [J]. Acta mathematica scientia,Series A, 2006, 26(4): 559-569. |
[11] | FANG Cong-Na, WANG Quan-Yi. The Existence and Uniqueness and Global Attraction of Periodic Solutions for a Class of Functional Differential Equations [J]. Acta mathematica scientia,Series A, 2005, 25(6): 913-925. |
[12] | BANG Shi-Guo. Periodic Solutions of Liénard Equations with Delay [J]. Acta mathematica scientia,Series A, 2004, 4(6): 689-693. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 132
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 78
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|