Acta mathematica scientia,Series A ›› 2018, Vol. 38 ›› Issue (6): 1112-1121.
Previous Articles Next Articles
Received:
2017-12-06
Online:
2018-12-26
Published:
2018-12-27
Contact:
Donghui Fang
E-mail:847285225@qq.com;dh_fang@jsu.edu.cn
Supported by:
CLC Number:
Lingli Hu, Donghui Fang. Optimality Conditions for Composite Optimization Problems with Conical Constraints[J].Acta mathematica scientia,Series A, 2018, 38(6): 1112-1121.
1 |
Boţ R I , Grad S M , Wanka G . On strong and total Lagrange duality for convex optimization problems. J Math Anal Appl, 2008, 337: 1315- 1325
doi: 10.1016/j.jmaa.2007.04.071 |
2 |
Boţ R I , Grad S M , Wanka G . New regularity conditions for strong and total Fenchel-Lagrange duality in infinite dimensional spaces. Nonlinear Anal, 2008, 69: 323- 336
doi: 10.1016/j.na.2007.05.021 |
3 |
Fang D H , Li C , Ng K F . Constraint qualifications for optimality conditions and total Lagrangian dualities in convex infinite programming. Nonlinear Anal, 2010, 73: 1143- 1159
doi: 10.1016/j.na.2010.04.020 |
4 | Dinh N , Mordukhovich B S , Nghia T T A . Qualification and optimality conditions for DC programs with infinite constraints. Acta Math Vietnamica, 2009, 34: 123- 153 |
5 |
Dinh N , Mordukhovich B S , Nghia T T A . Subdifferentials of value functions and optimality conditions for DC and bilevel infinite and semi-infinite programs. Math Program, 2010, 123: 101- 138
doi: 10.1007/s10107-009-0323-4 |
6 |
Jeyakumar V , Lee G M . Complete characterization of stable Farkas' lemma and cone-convex programming duality. Math Program Ser A, 2008, 114: 335- 347
doi: 10.1007/s10107-007-0104-x |
7 | Sun X K , Chai Y . Optimality conditions for DC fractional programming problems. Advan Math, 2014, 18: 9- 28 |
8 |
Li G , Zhou Y Y . The stable Farkas lemma for composite convex functions in infinite dimensional spaces. Acta Math Appl Sin, 2015, 31: 677- 692
doi: 10.1007/s10255-015-0493-1 |
9 | 方东辉, 王梦丹. 锥复合优化问题的Lagrange对偶. 系统科学与数学, 2017, 37: 203- 211 |
Fang D H , Wang M D . Study on the Lagrange dualities for composite optimization problems with conical constraints. J Sys Sci Math Sci, 2017, 37: 203- 211 | |
10 |
Fang D H , Gong X . Extended Farkas lemma and strong duality for composite optimization problems with DC functions. Optim, 2017, 66: 179- 196
doi: 10.1080/02331934.2016.1266628 |
11 |
Boţ R I , Grad S M , Wanka G . A new constraint qualification for the formula of the subdifferential of composed convex functions in infinite dimensional spaces. Math Nachr, 2008, 281: 1- 20
doi: 10.1002/(ISSN)1522-2616 |
12 |
Dinh N , Vallet G , Volle M . Functional inequalities and theorems of the alternative involving composite functions. J Gold Optim, 2014, 59: 837- 863
doi: 10.1007/s10898-013-0100-z |
13 | Zǎlinescu C . Convex Analysis in General Vector Spaces. New Jersey: World Scientific, 2002 |
[1] | Huang Zhenggang. A New Notion of Generalized Subgradients and Its Properties [J]. Acta mathematica scientia,Series A, 2015, 35(5): 927-935. |
[2] | LONG Xian-Jun. Optimality Conditions for Approximate Solutions on Nonconvex Vector Equilibrium Problems in Asplund Spaces [J]. Acta mathematica scientia,Series A, 2014, 34(3): 593-602. |
[3] | Wu Shi-Liang, LI Cui-Xia. Spectral Analysis on Some Discrete Systems From Maxwell Equations [J]. Acta mathematica scientia,Series A, 2014, 34(1): 109-114. |
[4] | YU Li, XU Xi-Hong. Generalized Gradient of Set-valued Optimization Problems and Optimality Conditions of Strong-efficient Solutions [J]. Acta mathematica scientia,Series A, 2012, 32(4): 685-690. |
[5] | CHEN Jia-Wei, LI Jun, WANG Jing-Nan. Optimality Conditions and Duality for Nonsmooth Multiobjective Optimization Problems with Cone Constraints [J]. Acta mathematica scientia,Series A, 2012, 32(1): 1-12. |
[6] | WEN Kai-Ting, LI He-Rui, ZENG Fan-Pei. A Ky Fan Matching Theorem for MLC Mappings with Applications to Minimax Inequalities and Saddle Points [J]. Acta mathematica scientia,Series A, 2011, 31(4): 1077-1082. |
[7] | WANG Qi-Lin, LI Shng-Jie. Generalized |Higher-order Cone-directed Derivatives and Applications to Set-valued Optimization [J]. Acta mathematica scientia,Series A, 2011, 31(4): 902-909. |
[8] | LI Jian-Lei, HUANG Ting-Zhu, LI Liang. A Modified Nonlinear Uzawa Algorithm for Solving Saddle Point Problem [J]. Acta mathematica scientia,Series A, 2011, 31(1): 250-262. |
[9] | Yu Guolin; Liu Sanyang. Super Efficiency of the ic-cone-convexlike Set-valued Optimization Problems in Locally Convex Spaces [J]. Acta mathematica scientia,Series A, 2008, 28(4): 679-687. |
[10] |
Zhao Wenhui;Gao Yan.
Second-order Optimality Conditions for C1,1 Semidefinite Programming [J]. Acta mathematica scientia,Series A, 2008, 28(1): 155-163. |
[11] | Hou Zhenmei; Liu Sanyang; Zhou Yong. The Optimality Conditions of Set-valued Vector Optimization on Super Efficiency [J]. Acta mathematica scientia,Series A, 2007, 27(1): 131-137. |
[12] | YAO Wei-Hong, SHANG De-Sheng, YU Min-Jie. Global Structure Analysis of the Plane Five Order System with the Stellar Node [J]. Acta mathematica scientia,Series A, 2003, 23(2): 193-207. |
[13] | Zhang Jianwen, Li Qingshi. Melnikov Function and Application in Supercritical Cases [J]. Acta mathematica scientia,Series A, 1997, 17(2): 152-162. |
|