Acta mathematica scientia,Series A ›› 2018, Vol. 38 ›› Issue (6): 1122-1134.
Previous Articles Next Articles
Yadi Zhao,Lifei Wu,Xiaozhong Yang*(),Shuzhen Sun
Received:
2017-04-11
Online:
2018-12-26
Published:
2018-12-27
Contact:
Xiaozhong Yang
E-mail:yxiaozh@ncepu.edu.cn
Supported by:
CLC Number:
Yadi Zhao, Lifei Wu, Xiaozhong Yang, Shuzhen Sun. A Kind of Efficient Difference Method for the Time Fractional Sub-Diffusion Equation[J].Acta mathematica scientia,Series A, 2018, 38(6): 1122-1134.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
Implicit | E-I | |||||
Order2 | Order2 | |||||
200 | 2.545864e-4 | — | 1.094796e-4 | — | ||
400 | 1.047661e-4 | 1.280984 | 4.699933e-5 | 1.219950 | ||
800 | 4.284855e-5 | 1.289853 | 2.031905e-5 | 1.209807 | ||
1600 | 1.746390e-5 | 1.294870 | 8.822774e-6 | 1.203529 | ||
3200 | 7.102732e-6 | 1.297930 | 3.842242e-6 | 1.199284 | ||
200 | 8.475178e-5 | — | 3.620591e-5 | — | ||
400 | 3.023084e-5 | 1.487222 | 1.351384e-5 | 1.421788 | ||
800 | 1.072535e-5 | 1.494997 | 5.109668e-6 | 1.403136 | ||
1600 | 3.788677e-6 | 1.501259 | 1.950831e-6 | 1.389141 | ||
3200 | 1.332788e-6 | 1.507247 | 7.514643e-7 | 1.376312 | ||
200 | 4.222321e-5 | — | 1.920942e-5 | — | ||
400 | 1.399031e-5 | 1.593609 | 6.639797e-6 | 1.532603 | ||
800 | 4.601493e-6 | 1.604254 | 2.352434e-6 | 1.496985 | ||
1600 | 1.501415e-6 | 1.615779 | 8.522910e-7 | 1.464736 | ||
3200 | 4.849225e-7 | 1.630497 | 3.161945e-7 | 1.430534 |
1 | Metzler R , Klafter J . The random walk's guide to anomalous diffusion:a fractional dynamics approach. Physics Reports, 2000, 339 (1): 1- 77 |
2 | 陈文, 孙洪广, 李西成, 等. 力学与工程问题的分数阶导数建模. 北京: 科学出版社, 2010 |
Chen W , Sun H G , Li X C , et al. Fractional Derivative Modeling of Mechanics and Engineering Problems. Beijing: Science Press, 2010 | |
3 | Vladimir V , Uchaikin . Fractional Derivatives for Physicist and Engneers, Volume Ⅱ:Applications. New York: Springer, 2013 |
4 |
Li J , Guo B L . Parameter identification in fractional differential equations. Acta Mathematica Scientia, 2013, 33 (3): 855- 864
doi: 10.1016/S0252-9602(13)60045-4 |
5 | Guo B L , Pu X K , Huang F H . Fractional Partial Differential Equations and Their Numerical Solutions. Beijing: Science Press, 2015 |
6 | 孙志忠, 高广花. 分数阶微分方程的有限差分方法. 北京: 科学出版社, 2015 |
Sun Z Z , Gao G H . Finite Difference Methods for Fractional Differential Equations. Beijing: Science Press, 2015 | |
7 |
覃平阳, 张晓丹. 空间-时间分数阶对流扩散方程的数值解法. 计算数学, 2008, 30 (3): 305- 310
doi: 10.3321/j.issn:0254-7791.2008.03.008 |
Tan P Y , Zhang X D . Numerical solution of space-time fractional convection diffusion equation. Computational Mathematics, 2008, 30 (3): 305- 310
doi: 10.3321/j.issn:0254-7791.2008.03.008 |
|
8 |
Tadjeran C , Meerschaert Mark M , Scheffler H P . A second-order accurate numerical approximation for the fraction diffusion equation. Journal of Computational Physics, 2006, 213 (1): 205- 213
doi: 10.1016/j.jcp.2005.08.008 |
9 |
Zhao Y , Zhang Y , Liu F , et al. Convergence and superconvergence of a fully-discrete scheme for multi-term time fractional diffusion equations. Computers and Mathematics with Applications, 2017, 73 (6): 1087- 1099
doi: 10.1016/j.camwa.2016.05.005 |
10 |
Chen C M , Liu F , Burrage K . Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation. Applied Mathematics and Computation, 2008, 198 (2): 754- 769
doi: 10.1016/j.amc.2007.09.020 |
11 |
Gao G H , Sun Z Z . A compact finite difference scheme for the fractional sub-diffusion equations. Journal of Computational Physics, 2011, 230 (3): 586- 595
doi: 10.1016/j.jcp.2010.10.007 |
12 | Liu F , Shen S , Anh V , et al. Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation. Anziam Journal, 2005, 46 (E): C488- C504 |
13 |
Shen S , Liu F , Anh V , et al. Implicit difference approximation for the time fractional diffusion equation. Journal of Applied Mathematics and Computing, 2006, 22 (3): 87- 99
doi: 10.1007/BF02832039 |
14 | Yuste S B . Weighted average finite difference methods for fractional diffusion equations. Journal of Computational Physics, 2004, 216 (1): 264- 274 |
15 | Yuste S B , Acedo L . An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations. Siam Journal on Numerical Analysis, 2006, 42 (5): 1862- 1874 |
16 |
Lin Y , Xu C . Finite difference/spectral approximations for the time-fractional diffusion equation. Journal of Computational Physics, 2007, 225 (2): 1533- 1552
doi: 10.1016/j.jcp.2007.02.001 |
17 | 张宝琳, 袁国兴, 刘兴平. 偏微分方程并行有限差分方法. 北京: 科学出版社, 1994 |
Zhang B L , Yuan G X , Liu X P . Parallel Finite Difference Methods for Partial Differential Equations. Beijing: Science Press, 1994 | |
18 |
Zhang Y N , Sun Z Z , Wu H W . Error estimates of Crank-Nicolson-type difference schemes for the sub-diffusion equation. SIAM Journal on Numerical Analysis, 2011, 49 (6): 2302- 2322
doi: 10.1137/100812707 |
[1] |
Zhihua Zhang,Pingyan Chen.
Complete Convergence for Weighted Sums for |
[2] | Dehua Qiu,Juan Xiao. Complete Moment Convergence for Sung's Type Weighted Sums Under END Setup [J]. Acta mathematica scientia,Series A, 2018, 38(6): 1103-1111. |
[3] | Zhifeng Zhu,Shaoyi Zhang. Study on the Convergence of Nonhomogeneous Markov Chains with Probability Distance [J]. Acta mathematica scientia,Series A, 2018, 38(5): 963-969. |
[4] | Haibo Gu,Caixia Gao. Razumikhin-Type Theorems on P-th Moment and Almost Sure Stability of Neutral Stochastic Switched Nonlinear Systems [J]. Acta mathematica scientia,Series A, 2018, 38(5): 970-983. |
[5] | Lifei Zheng,Jie Guo,Meihua Wu,Xiaorui Wang,Aying Wan. The Research on a Class of the Predator-Prey-Mutualist System with Delays [J]. Acta mathematica scientia,Series A, 2018, 38(5): 1001-1013. |
[6] | Wu Bin, Gao Ying, Yan Lin, Yu Jun. Carleman Estimate for a 2×2 Strongly Coupled Partial Differential System with Nonsingular Coefficient Matrix of Principal Parts and Application to an Inverse Source Problem [J]. Acta mathematica scientia,Series A, 2018, 38(4): 779-799. |
[7] | Yang Xuan, Ruan Xiaoe, Wang Peng. Convergence Analysis of Iterative Learning Control for Linear Continuous-Time Switched Systems with Arbitrary Time-Driven Switching Rules [J]. Acta mathematica scientia,Series A, 2018, 38(3): 599-612. |
[8] | Wang Junli, Zhang Xingwei, Liu Jian. Instability of Plane Couette-Poiseuille Flow of Compressible Navier-Stokes Equation [J]. Acta mathematica scientia,Series A, 2018, 38(2): 322-333. |
[9] | Wang Wansheng, Zhong Peng, Zhao Xinyang. Long-Time Stability of Nonlinear Neutral Differential Equations with Variable Delay [J]. Acta mathematica scientia,Series A, 2018, 38(1): 96-109. |
[10] | Meng Xiaoying. Analysis of a Stochastic Delayed Epidemic Model with a Non-Monotonic Incidence Rate [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1162-1175. |
[11] | Li Haixia. Stability and Uniqueness of Positive Solutions for a Food-Chain Model [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1094-1104. |
[12] | Wang Chun, Xu Tianzhou. Solution and Hyers-Ulam-Rassias Stability of a Mixed Type Quadratic-Additive Functional Equation with a Parameter in Quasi-Banach Spaces [J]. Acta mathematica scientia,Series A, 2017, 37(5): 846-859. |
[13] | Chen Hongbin, Gan Siqing, Xu Da, Peng Yulong. A Formally Second-Order BDF Compact ADI Difference Scheme for the Two-Dimensional Fractional Evolution Equation [J]. Acta mathematica scientia,Series A, 2017, 37(5): 976-992. |
[14] | Yang Jihua, Zhang Erli, Liu Mei. Dynamic Analysis and Chaos Control of a Finance System with Delayed Feedbacks [J]. Acta mathematica scientia,Series A, 2017, 37(4): 767-782. |
[15] | Xiong Jun, Li Junmin, He Chao. Fuzzy Boundary Control Design for a Class of First-Order Hyperbolic PDEs [J]. Acta mathematica scientia,Series A, 2017, 37(3): 469-477. |
|