Acta mathematica scientia,Series A ›› 2018, Vol. 38 ›› Issue (1): 110-121.
Previous Articles Next Articles
Ye Yaojun, Hu Yue
Received:
2016-03-08
Revised:
2017-04-17
Online:
2018-02-26
Published:
2018-02-26
Supported by:
CLC Number:
Ye Yaojun, Hu Yue. Global Existence and Exponential Decay of Solution for Some Higher-Order Wave Equation[J].Acta mathematica scientia,Series A, 2018, 38(1): 110-121.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Gerbi S, Said-Houari B. Exponential decay for solutions to semilinear damped wave equation. Discrete and Continuous Dynamical System-Series S, 2012, 5:559-566 [2] Gerbi S, Said-Houari B. Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions. Nonlinear Analysis, TMA, 2011, 74:7137-7150 [3] Gerbi S, Said-Houari B. Local existence and exponential growth for a semilinear damped wave equation with dynamic boundary conditions. Advances in Differential Equations, 2008, 13:1051-1074 [4] Gazzola F, Squassina M. Global solutions and finite time blow up for damped semilinear wave equations. Ann I H Poincaré-AN, 2006, 23:185-207 [5] Guesmia A. Existence globale et stabilisation interne non linéaire d'un systéme de Petrovsky. Bell Belg Math Soc, 1998, 5:583-594 [6] Guesmia A. Energy decay for a damped nonlinear coupled system. J Math Anal Appl, 1999, 239:38-48 [7] Aassila M, Guesmia A. Energy decay for a damped nonlinear hyperbolic equation. Appl Math Lett, 1999, 12:49-52 [8] Komornik V. Exact Controllability and Stabilization, The Multiplier Method. Paris:Masson, 1994 [9] Messaoudi S A. Global existence and nonexistence in a system of Petrovsky. J Math Anal Appl, 2002, 265:296-308 [10] Chen W Y, Zhou Y. Global nonexistence for a semilinear Petrovsky equation. Nonlinear Anal TMA, 2009, 70:3203-3208 [11] Wu S T, Tsai L Y. On global solutions and blow-up of solutions for nonlinearly damped Petrovsky system. Taiwanese J Math, 2009, 13:545-558 [12] Nakao M. A difference inequality and its application to nonlinear evolution equations. J Math Soc Japan, 1978, 30:747-762 [13] Messaoudi S A. Global existence and decay of solutions to a system of Petrovsky. Math Sci Res J, 2002, 11:534-541 [14] Amroun N E, Benaissa A. Global existence and energy decay of solutions to a Petrovsky equation with general nonlinear dissipation and source term. Georgian Math J, 2006, 13:397-410 [15] Li G, Sun Y N, Liu W J. Global existence and blow-up of solutions for a strongly damped Petrovsky system with nonlinear damping. Appl Analysis, 2011, DOI:10.1080/00036811.2010.550576 [16] Nakao M. Bounded, periodic and almost periodic classical solutions of some nonlinear wave equations with a dissipative term. J Math Soc Japan, 1978, 30:375-394 [17] Nakao M, Kuwahara H. Decay estimates for some semilinear wave equations with degenerate dissipative terms. Funkcialaj Ekvacioj, 1987, 30:135-145 [18] Bernner P, Von Whal W. Global classical solutions of nonlinear wave equations. Math Z, 1981, 176:87-121 [19] Pecher H. Die existenz reguläer Lösungen für Cauchy-und anfangs-randwertproble-me michtlinear wellengleichungen. Math Z, 1974, 140:263-279 [20] Payne L E, Sattinger D H. Saddle points and instability of nonlinear hyperbolic equations. Israel J Math, 1975, 22:273-303 [21] Sattinger D H. On global solutions for nonlinear hyperbolic equations. Arch Rational Mech Anal, 1968, 30:148-172 [22] Wang B X. Nonlinear scattering theory for a class of wave equations in Hs. J Math Anal Appl, 2004, 296:74-96 [23] Miao C X. The time space estimates and scattering at low energy for nonlinear higher order wave equations. Acta Mathematica Sinica Series A, 1995, 38:708-717 [24] Ye Y J. Existence and asymptotic behavior of global solutions for a class of nonlinear higher-order wave equation. Journal of Inequalities and Applications, 2010, 2010:1-14 [25] Aliev A B, Lichaei B H. Existence and non-existence of global solutions of the Cauchy problem for higher order semilinear pseudo-hyperbolic equations. Nonlinear Analysis TMA, 2010, 72:3275-3288 [26] Nehari Z. On a class of nonlinear second-order differential equations. Trans Amer Math Soc, 1960, 95:101-123 [27] Willem M. Minimax Theorems. Boston:Birkhäuser Boston, 1996 [28] Vitillaro E. Global nonexistence theorems for a class of evolution equations with dissipation. Archive for Rational Mechanics and Analysis, 1999, 149:155-182 [29] Levine H A, Pucci P, Serrin J. Some remarks on global nonexistence for nonautonomous abstract evolutions equations. Contemporary Math, 1997, 208:253-263 [30] Wu S T, Tsai L Y. On global existence and blow-up of solutions for an integro-differential equation with strong damping. Taiwanese J Mathematics, 2006, 10:979-1014 [31] Kalantarov V K, Ladyzhenskaya O A. The occurrence of collapse for quasi-linear equation of parabolic and hyperbolic typers. J Soviet Math, 1978, 10:53-70 |
[1] | Wang Jun, Wang Tianlu, Wen Yanhua, Zhou Xianfeng. Global Solutions of IVP for N-Dimensional Nonlinear Fractional Differential Equations with Delay [J]. Acta mathematica scientia,Series A, 2018, 38(5): 903-910. |
[2] | Lin Jiaoyan. Uniform Estimates in Time for the Solution to a Fluid-Particle Model [J]. Acta mathematica scientia,Series A, 2018, 38(3): 565-570. |
[3] | Zhang Hongwei, Liu Gongwei, Hu Qingying. Initial Boundary Value Problem for a Class Wave Equation with Logarithmic Source Term [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1124-1136. |
[4] | Lei Qian, Li Ning, Yang Han. Blow Up and Asymptotic Behavior in the Beam Equation [J]. Acta mathematica scientia,Series A, 2015, 35(4): 738-747. |
[5] | Ling Zhengqiu, Qin Siqian. Coupled Semilinear Parabolic System with Nonlinear Nonlocal Boundary Condition [J]. Acta mathematica scientia,Series A, 2015, 35(2): 234-244. |
[6] | ZHANG Chun-Guo, ZHANG Hai-Yan, GU Shang-Wu. Energy Decay Estimates for the Weakly Coupled Systems with Local Memory Damping [J]. Acta mathematica scientia,Series A, 2015, 35(1): 194-209. |
[7] | CHEN Xiang-Ying. Global Existence of Solution of Cauchy Problem for A Generalized IMBq Equation with Weak Damping [J]. Acta mathematica scientia,Series A, 2015, 35(1): 68-82. |
[8] | ZHU Xu-Sheng, LI Fang-E. The Global Solutions of the Compressible Euler Equations With Nonlinear Damping in 3-Dimensions [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1111-1122. |
[9] | CHEN Shu-Hong, GUO Bo-Ling. The Existence of Global Solution of the Ginzburg-Landau Equations for Atomic Fermi Gases Near the BCS-BEC Crossover [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1359-1368. |
[10] | SHI Qi-Hong, WANG Shu, WANG Chang-Wei. On the Existence of Weak Solutions for Nonlinear Schr\"{o}dinger-Klein-Gordon Equations [J]. Acta mathematica scientia,Series A, 2011, 31(4): 1122-1132. |
[11] | YANG Zhi-Jian, CHENG Jian-Ling. Asymptotic Behavior of Solutions to the Kirchhoff Type Equation [J]. Acta mathematica scientia,Series A, 2011, 31(4): 1008-1021. |
[12] | Zeng Youdong. On the Evolution p-Laplacian Equation with Singular Coefficients [J]. Acta mathematica scientia,Series A, 2008, 28(4): 649-660. |
[13] |
Zhang Xinguang; Liu Lishan.
Existence of Global Solutions for Initial Value Problems of First Order Impulsive Integro-differential Equations in Banach Spaces [J]. Acta mathematica scientia,Series A, 2008, 28(2): 383-392. |
[14] | Han Xianjun; Chen Guowang. Initial Boundary Value Problems for a Class of Nonlinear Wave Equation of Higher Order [J]. Acta mathematica scientia,Series A, 2007, 27(4): 624-640. |
[15] | Wei Xuemei, Cui Shangbin. Existence and Uniqueness of Global Solutions of a Free Boundary Problem Modeling Tumor Growth [J]. Acta mathematica scientia,Series A, 2006, 26(1): 1-008. |
|