[1] Beylkin G. The inversion problem and application of the generalized Radon transform. Comm Pure Appl Math, 1984, 37: 579--599
[2] Gullberg G T, Budinger T F. The use of filtering methods to compensate for constant attenuation in single photon emission computed tomography. EEE Trans Biomed Eng, 1981, BME-28: 142--157
[3] Wang Jinping, Du Jinyuan. A note on singular value decomposition for Radon transform in Rn. Acta Math Sci, 2002, 22B(3): 369--373
[4] 王金平. 指数型 Radon 变换的一些结果. 数学物理学报, 2006, 26A(1): 31--38
[5] Natterer F. Inversion of the attenuated Radon transform. Inverse Problems, 2001, 17: 113--119
[6] Tretiak O J, Metz C L. The exponential Radon transform. SIAM J Appl Math, 1980, 39: 341--354
[7] Faridani A, Finch D, Ritman E L, Smith K T. Local tomography II. SIAM J Appl Math, 1997, 57: 1095--1127
[8] Denecker K, Overloop J V, Sommen F. The general quadratic Radon transform. Inverse Problems, 1998, 14: 615--633
[9] Novikov R G. On the range characterization for the two-dimensional attenuated X-ray transform. Inverse Problems, 2002, 18: 677--700
[10] Hu Lianggen, Wang Jinping. Strong convergence of a new iteration for a finite family of accretive operators. Fixed Point Theory Appl, 2009, doi:10.1155} /2009/491583 |