[1] Drew J H, Johnson C R, Olesky D D, et al. Spectrally arbitrary patterns. Linear Algebra Appl, 2000, 308: 121--137
[2] Eschenbach C A, Li Z. Potentially nilpotent sign pattern matrices. Linear Algebra Appl, 1999, 299: 81--99
\REF{[3]} Johnson C R, Summers T S. The potentially stable tree sign patterns for dimensions less than five. Linear Algebra Appl, 1989, 126: 1--13
[4] Gao Y, Li J. On the potential stability of star sign pattern matrices. Linear Algebra Appl, 2001, 327: 61--68
[5] Li H, Li J. On potentially nilpotent double star sign patterns. Czech Math J, 2009, 59(134)}: 489--501
[6] MacGillivray G, Tifenbach R M, Driessche P. Spectrally arbitrary star sign patterns. Linear Algebra Appl, 2005, 400: 99--119
[7] Miao Z, Li J. Inertially arbitrary (2r-1)-diagonal sign patterns. Linear Algebra Appl, 2002, 357: 133--141
[8] Shao J, Liu Y, Ren L. The inverse problems of the determinantal regions of ray pattern and complex sign pattern matrices. Linear Algebra Appl, 2006, 416: 835--843
[9] Yeh L. Sign pattern matrices that allow a nilpotent matrix. Bulletin of the Australian Mathematical Society, 1996, 53: 189--196
[10] 周波.含S -圈布尔矩阵类的幂敛指数集.数学物理学报,2006, 26A(5): 641--646 |