Acta mathematica scientia,Series A ›› 2002, Vol. 22 ›› Issue (3): 391-398.
• Articles • Previous Articles Next Articles
LIU Yan-Qing, GUO Lin
Online:
Published:
Supported by:
国家自然科学基金资助项目(10171057)及山东省自然科学基金资助项目(Z2000A02)
Abstract:
利用锥理论和M¨onch不动点定理,讨论了Banach空间中一类带奇异性的脉冲微分方程边值问题正解的存在性.作为其应用,给出了一个例子.
Key words: 奇异方程;不动点;边值问题;正解.
CLC Number:
LIU Yan-Qing, GUO Lin. Banach空间中一类带奇异性的脉冲微分方程边值问题的正解[J].Acta mathematica scientia,Series A, 2002, 22(3): 391-398.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbA/EN/
http://121.43.60.238/sxwlxbA/EN/Y2002/V22/I3/391
[1] 郭大钧.非线性泛函分析.济南:山东科学技术出版社,1985 [2] 郭大钧,孙经先.抽象空间常微分方程.济南:山东科学技术出版社,1989 [3] GuoDajun,Lakshmikantham V,LiuXinzhi.Nonlinearintegralequationsinabstractspaces.KluwerAcademic Publishers,1996 [4] AgarwalRP,O′ReganD.Singularboundaryvalueproblems.NonlinearAnalysis,1996,27:645-656 [5] AgarwalRP,O′ReganD.Nonlinearsuperlinearsingularandnonsingularsecondorderboundaryvalueproblems.JDiffEqns,1998,143:60-95 [6] 程建刚.一类带奇异性的两点边值问题.数学物理学报,2000,20(1):109-114 [7] 周友明.Banach空间二阶非线性奇异微分方程的解.数学物理学报,2000,20(1):181-186 [8] LiuLishan,IterativemethodforsolutionsandcoupledquasisolutionsofnonlinearFredholmintegralequationsin orderedBanachspaces.IndianJPureApplMath,1996,27:959-972
Cited