Acta mathematica scientia,Series A ›› 2002, Vol. 22 ›› Issue (3): 323-331.
• Articles • Previous Articles Next Articles
LIU Bin, YU Jian-She
Online:
Published:
Supported by:
中国博士后科学基金(No.200114)和教育部高等学校优秀青年教师教学科研奖励计划基金资助项目
Abstract:
该文利用重合度理论和一些分析技巧讨论了具时滞狀维Liénard 型方程狓″+dd狋grad犉(狓)+grad犌(狓(狋-τ))=狆(狋)调和解的存在性,在对阻尼项dd狋grad犉(狊)没有任何限制的前提下,给出了存在调和解的条件.
Key words: Liénard型方程;调和解;重合度
CLC Number:
LIU Bin, YU Jian-She. 具时滞n维Lienard型方程调和解的存在性[J].Acta mathematica scientia,Series A, 2002, 22(3): 323-331.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbA/EN/
http://121.43.60.238/sxwlxbA/EN/Y2002/V22/I3/323
[1] GeWeigao.OntheexistenceofharmonicsolutionsofLiénardsystems.NonlinearAnalTMA,1991,16(2):183-190 [2] WengGenqing,ChengSuisun.AprioriboundsforperiodicsolutionsofadelayRayleighequation.ApplMathLetters,1999,12:41-44 [3] 黄先开.具有时滞的狀维Liénard型方程的调和解.系统科学与数学,1999,19(3):328-335 [4] 葛渭高.狀维Liénard型方程的调和解.数学年刊(A),1989,11(3):297-307 [5] 黄先开.具有时滞的Duffing型方程狓″狓(狋-τ))=狆(狋)的2π 周期解.科学通报,1994,39(3):201-203 [6] NguyenPhuongCác.Periodicsolutionsofasecondordernonlinearsystem.JMathAnalAppl,1997,214:219-232 [7] MawhinJ.Topologicaldegreeandboundaryvalueproblemsfornonlineardifferentialequations.In “TopologicalMethforOrdinaryDifferentialEquations”(P.M.Fitzpatrick,M.Martelli,J.Mawhin,andR.nussbaum,Eds),LectureNotesin Mathematics,NewYork/Berlin:Springerverlag,1991.74-142 [8] MawhinJ.TopologicaldegreemethodsinnonlimearboundaryValueproblems.In “NSFCBMSRegionalConferenceSeriesin Math.”,AmerMathSoc,Providence,RI,1979 [9] HardyG H,LittlewoodJE,PolyaG.Inequalities.London:CambridgeUnivPress,1964 [10] DeimlingK.Nonlinearfunctionalanalysis.Now York/Berlin:SpringerVerlag,1985 [11] 郭大钧.非线性泛函分析.济南:山东科学技术出版社,1985
Cited