Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (3): 1058-1080.doi: 10.1007/s10473-022-0314-6
• Articles • Previous Articles Next Articles
Ruiying WEI1, Yin LI2, Zheng-an YAO3
Received:
2020-10-03
Revised:
2021-07-04
Online:
2022-06-26
Published:
2022-06-24
Contact:
Yin LI,E-mail:liyin2009521@163.com
E-mail:liyin2009521@163.com
Supported by:
CLC Number:
Ruiying WEI, Yin LI, Zheng-an YAO. THE GLOBAL EXISTENCE AND A DECAY ESTIMATE OF SOLUTIONS TO THE PHAN-THEIN-TANNER MODEL[J].Acta mathematica scientia,Series A, 2022, 42(3): 1058-1080.
[1] | Bautista O, Sánchez S, Arcos J C, Méndez F. Lubrication theory for electro-osmotic flow in a slit microchannel with the Phan-Thien and Tanner model. J Fluid Mech, 2013, 722:496-532 |
[2] | Bird R B, Armstrong R C, Hassager O. Dynamics of Polymeric Liquids. Volume 1. New York:Wiley, 1977 |
[3] | Chen Y H, Luo W, Yao Z A. Blow up and global existence for the periodic Phan-Thein-Tanner model. J Differential Equations, 2019, 267:6758-6782 |
[4] | Chen Y H, Luo W, Zhai X P. Global well-posedness for the Phan-Thein-Tanner model in critical Besov spaceswithout damping. J Math Phys, 2019, 60:061503 |
[5] | Duan R J, Ukai S, Yang T, Zhao H J. Optimal convergence rate for compressible Navier-Stokes equations with potential force. Math Models Methods Appl Sci, 2007, 17:737-758 |
[6] | Fang D Y, Zi R Z. Global solutions to the Oldroyd-B model with a class of large initial data. SIAM J Math Anal, 2016, 48:1054-1084 |
[7] | Fang D Y, Zi R Z. Strong solutions of 3D compressible Oldroyd-B fluids. Math Methods Appl Sci, 2013, 36:1423-1439 |
[8] | Fang D Y, Zi R Z. Incompressible limit of Oldroyd-B fluids in the whole space. J Differential Equations, 2014, 256:2559-2602 |
[9] | Garduño I E, Tamaddon-Jahromi H R, Walters K, Webster M F. The interpretation of a long-standing rheological flow problem using computational rheology and a PTT constitutive model. J Non-Newton Fluid Mech, 2016, 233:27-36 |
[10] | Guillopé C, Saut J C. Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal, 1990, 15:849-869 |
[11] | Guillopé C, Saut J C. Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type. RAIRO Modél Math Anal Numér, 190, 24:369-401 |
[12] | Guo Y, Wang Y J. Decay of dissipative equations and negative Sobolev spaces. Comm Partial Differential Equations, 20112, 37:2165-2208 |
[13] | Hu X P, Wang D. Local strong solution to the compressible viscoelastic flow with large data. J Differential Equations, 2010, 249:1179-1198 |
[14] | Hu X P, Wu G C. Global existence and optimal decay rates for three-dimensionalcompressible viscoelastic flows. SIAM J Math Anal, 2013, 45:2815-2833 |
[15] | Ju N. Existence and uniqueness of the solution to the dissipative 2D Quasi-Geostrophic equations in the Sobolev space. Comm Math Phys, 2004, 251:365-376 |
[16] | Lei Z. Global existence of classical solutions for some Oldroyd-B model via the incompressible limit. Chin Ann Math, 2006, 27B:565-580 |
[17] | Lei Z, Liu C, Zhou Y. Global solutions for incompressible viscoelastic fluids. Arch Ration Mech Anal, 2008, 188:371-398 |
[18] | Li Y, Wei R Y, Yao Z A. Optimal decay rates for the compressible viscoelastic flows. J Math Phys, 2016, 57:111506 |
[19] | Lin F H, Liu C, Zhang P. On hydrodynamics of viscoelastic fluids. Comm Pure Appl Math, 2005, 58:1437-1471 |
[20] | Matsumura A. An Energy Method for the Equations of Motion of Compressible Viscous and Heat-conductive Fluids. University of Wisconsin-Madison MRC Technical Summary Report, 1986, 2194:1-16 |
[21] | Matsumura A, Nishida T. The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc Japan Acad Ser A, 1979, 55:337-342 |
[22] | Matsumura A, Nishida T. The initial value problems for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20:67-104 |
[23] | Molinet L, Talhouk R. On the global and periodic regular flows of viscoelastic fluids with a differential constitutive law. NoDEA Nonlinear Differential Equations Appl, 2004, 11:349-359 |
[24] | Nirenberg L. On elliptic partial differential equations. Ann Scuola Norm Sup Pisa, 1959, 13:115-162 |
[25] | Oldroyd J G. Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc Roy Soc London Ser A, 1958, 245:278-297 |
[26] | Oliveira P J, Pinho F T. Analytical solution for fully developed channel and pipe flow of Phan-Thien-Tanner fluids. J Fluid Mech, 1999, 387:271-280 |
[27] | Ponce G. Global existence of small solutions to a class of nonlinear evolution equations. Nonlinear Anal, 1985, 9:339-418 |
[28] | Qian J Z, Zhang Z F. Global well-posedness for compressible viscoelastic fluids near equilibrium. Arch Ration Mech Anal, 2010, 198:835-868 |
[29] | Schonbek M E, Wiegner M. On the decay of higher-order norms of the solutions of Navier-Stokes equations. Proc Roy Soc Edinburgh Sect A, 1996, 126:677-685 |
[30] | Sohinger V, Strain R M. The Boltzmann equation, Besov spaces, and optimal time decay rates in Rxn. Advances in Mathematics, 2014, 261:274-332 |
[31] | Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton University Press, 1970 |
[32] | Strain R M, Guo Y. Almost exponential decay near Maxwellian. Comm Partial Differential Equations, 2006, 31:417-429 |
[33] | Tan Z, Wang Y J. On hyperbolic-dissipative systems of composite type. J Differential Equations, 2016, 260:1091-1125 |
[34] | Tan Z, Wang Y J, Wang Y. Decay estimates of solutions to the compressible Euler-Maxwell system in R3. J Differential Equations, 2014, 257:2846-2873 |
[35] | Tan Z, Wu W P, Zhou J F. Global existence and decay estimate of solutions to magneto-micropolar fluid equations. J Differential Equations, 2019, 266:4137-4169 |
[36] | Wang Y J. Decay of the Navier-Stokes-Poisson equations. J Differential Equations, 2012, 253:273-297 |
[37] | Wei R Y, Li Y, Yao Z A. Decay of the compressible viscoelastic flows. Commun Pure Appl Anal, 2016, 15:1603-1624 |
[38] | Zhang T, Fang D. Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical Lp framework. SIAM J Math Anal, 2012, 44:2266-2288 |
[39] | Zi R Z. Global solution in critical spaces to the compressible Oldroyd-B model with non-small coupling parameter. Discrete Contin Dyn Syst Ser A, 2017, 37:6437-6470 |
[40] | Zhou Z S, Zhu C J, Zi R Z. Global well-posedness and decay rates for the three dimensional compressible Oldroyd-B model. J Differential Equations, 2018, 265:1259-1278 |
[41] | Zhu Y. Global small solutions of 3D incompressible Oldroyd-B model without damping mechanism. J Funct Anal, 2018, 274:2039-2060 |
[1] | Tong Tang,Cong Niu. Global Existence of Weak Solutions to the Quantum Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2022, 42(2): 387-400. |
[2] | Shijie Shi,Zhengrong Liu,Hui Zhao. Boundedness and Stabilization of a Chemotaxis Model Describing Tumor Invasion with Signal-Dependent Motility [J]. Acta mathematica scientia,Series A, 2022, 42(2): 502-519. |
[3] | Yuge Du,Shuying Tian. Existence and Blow-Up of a Parabolic Equation with Logarithmic Nonlinearity [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1816-1829. |
[4] | Zaiyun Zhang,Zhenhai Liu,Youjun Deng. Global Existence and General Decay for a Nonlinear Viscoelastic Equation with Time-Varying Delay and Velocity-Dependent Material Density [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1684-1704. |
[5] | Zhe Jia,Zuodong Yang. Global Boundedness in a Chemotaxis-Haptotaxis Model with Nonlinear Diffusion and Signal Production [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1382-1395. |
[6] | Juan Wang,Zixia Yuan. Global Existence and Convergence of Solutions to a Chemotactic Model with Logarithmic Sensitivity and Mixed Boundary Conditions [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1646-1669. |
[7] | Xiaoli Han. Multiple Pertubations to a Quasilinear Schrödinger Equation [J]. Acta mathematica scientia,Series A, 2020, 40(4): 869-881. |
[8] | Jie Wu,Hongxia Lin. The Global Solution and Asymptotic Behavior of Parabolic-Parabolic Keller-Segel Type Model [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1102-1114. |
[9] | Penghong Zhong,Ganshan Yang,Xuan Ma. Global Existence and Self-Similar Blowup of Landau-Lifshitz-Gilbert Equation on Hyperbolic Space [J]. Acta mathematica scientia,Series A, 2019, 39(3): 461-474. |
[10] | Su Xiao, Wang Shubin. Finite Time Blow-Up for the Damped Semilinear Wave Equations with Arbitrary Positive Initial Energy [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1085-1093. |
[11] | Qiu Hua, Zhang Yingshu, Fang Shaomei. The Global Existence Result of a Leray-α-Oldroyd Model to the Incompressible Viscoelastic Flow [J]. Acta mathematica scientia,Series A, 2017, 37(1): 102-112. |
[12] | Liu Yang. Potential Well and Application to Non-Newtonian Filtration Equations at Critical Initial Energy Level [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1211-1220. |
[13] | Huang Shoujun, Wang Rui. Plane Wave Solutions to the Euler Equations for Chaplygin Gases [J]. Acta mathematica scientia,Series A, 2016, 36(4): 681-689. |
[14] | Di Huafei, Shang Yadong. Global Existence and Nonexistence of Solutions for A Class of Fourth Order Wave Equation with Nonlinear Damping and Source Terms [J]. Acta mathematica scientia,Series A, 2015, 35(3): 618-633. |
[15] | SHEN Ji-Hong, ZHANG Ming-You, YANG Yan-Bing, LIU Bo-Wei, XU Run-Zhang. Global Well-posedness of Cauchy Problem for Damped Multidimensional Generalized Boussinesq Equations [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1173-1187. |
|