Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (3): 1081-1102.doi: 10.1007/s10473-022-0315-5
• Articles • Previous Articles Next Articles
Leilei TONG1, Zhong TAN2, Xu ZHANG3
Received:
2020-11-18
Revised:
2021-04-08
Online:
2022-06-26
Published:
2022-06-24
Contact:
Xu ZHANG,E-mail:xuzhang889@zzu.edu.cn
E-mail:xuzhang889@zzu.edu.cn
Supported by:
CLC Number:
Leilei TONG, Zhong TAN, Xu ZHANG. THE TIME DECAY RATES OF THE CLASSICAL SOLUTION TO THE POISSON-NERNST-PLANCK-FOURIER EQUATIONS IN $\mathbb{R}^3$[J].Acta mathematica scientia,Series A, 2022, 42(3): 1081-1102.
[1] | Barcilon V, Chen D P, Eisenberg R S, Jerome J. Qualitative properties of steady-state Poisson-Nernst-Planck systems:perturbation and simulation study. SIAM J Appl Math, 1997, 57:631-648 |
[2] | Biler P, Dolbeault J. Long Time Behavior of Solutions to Nernst-Planck and Debye-Hückel Drift-Diffusion Systems. Annales Henri Poincaré, 2000, 1:461-472 |
[3] | Biler P, Hebisch W, Nadzieja T. The Debye system:existence and large time behavior of solutions. Nonlinear Anal, 1994, 23:1189-1209 |
[4] | Bazant M Z, Thornton K, Ajdari A. Diffuse-charge dynamics in electrochemical systems. Physical review E, 2004, 70:021,506 |
[5] | Cesare P, Moriondo A, Vellani V, McNaughton P A. Ion channels gated by heat. Proc Natl Acad Sci USA, 1999, 96:7658-7663 |
[6] | Deng C, Li C M. Endpoint bilinear estimates and applications to the two-dimensional Poisson-Nernst-Planck system. Nonlinearity, 2013, 26:2993-3009 |
[7] | Duan R J, Ruan L Z, Zhu C J. Optimal decay rates to conservation laws with diffusion-type terms of regularity-gain and regularity-loss. Math Models Methods Appl Sci, 2012, 22:1250012 39 pp |
[8] | Eisenberg R S. Computing the field in proteins and channels. J Membrane Biol, 1996, 150:1-25 |
[9] | Eisenberg R S. From structure to function in open ionic channels. J Membrane Biol, 1999, 171:1-24 |
[10] | Elad D, Gavish N. Finite domain effects in steady state solutions of Poisson-Nernst-Planck equations. SIAM J Appl Math, 2019, 79:1030-1050 |
[11] | Eisenberg B, Liu W S. Poisson-Nernst-Planck systems for ion channels with permanent charges. SIAM J Math Anal, 2007, 38:1932-1966 |
[12] | Gajewski H. On existence, uniqueness and asymptotic behavior of solutions of the basic equations for carrier transport in semiconductors. Z Angew Math Mech, 1985, 65:101-108 |
[13] | Gagneux G, Millet O. A survey on properties of Nernst-Planck-Poisson system. Application to ionic transport in porous media. Appl Math Model, 2016, 40:846-858 |
[14] | Guo Y, Wang Y J. Decay of dissipative equations and negative Sobolev spaces. Commun Part Diff Equ, 2012, 37:2165-2208 |
[15] | Hsieh C Y. Global existence of solutions for the Poisson-Nernst-Planck system with steric effects. Nonlinear Anal Real World Appl, 2019, 50:34-54 |
[16] | Hsieh C Y, Lin T C. Exponential decay estimates for the stability of boundary layer solutions to poisson-nernst-planck systems:One spatial dimension case. SIAM J Appl Math, 2015, 47:3442-3465 |
[17] | Hsieh C Y, Lin T C, Liu C, Liu P. Global existence of the non-isothermal Poisson-Nernst-Planck-Fourier system. J Differential Equations, 2020, 269:7287-7310 |
[18] | Jerome J W. Analysis of charge transport. A mathematical study of semiconductor devices. Berlin:Springer-Verlag, 1996 |
[19] | Jordan P C, Bacquet R J, McCammon J A, Tran P. How electrolyte shielding influences the electrical potential in transmembrane ion channels. Biophysical Journal, 1989, 55:1041-1052 |
[20] | Ji L J, Liu P, Xu Z L, Zhou S G. Asymptotic analysis on dielectric boundary effects of modified Poisson-Nernst-Planck equations. SIAM J Appl Math, 2018, 78:1802-1822 |
[21] | Jiang N, Luo Y L, Zhang X. Long time stability of admissible equilibria in Poisson-Nernst-Planck-Fourier system. arXiv:1910.04094 |
[22] | Liu W S. Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems. SIAM J Appl Math, 2005, 65:754-766 |
[23] | Lin T C, Eisenberg B. A new approach to the lennard-jones potential and a new model:Pnp-steric equations. Commun Math Sci, 2014, 12:149-173 |
[24] | Lin T C, Eisenberg B. Multiple solutions of steady-state Poisson-Nernst-Planck equations with steric effects. Nonlinearity, 2015, 28:2053-2080 |
[25] | Liu P, Wu S, Liu C. Non-isothermal electrokinetics:energetic variational approach. Commun Math Sci, 2018, 16:1451-1463 |
[26] | Liu W S, Xu H G. A complete analysis of a classical Poisson-Nernst-Planck model for ionic flow. J Differential Equations, 2015, 258:1192-1228 |
[27] | Mock M S. An initial value problem from semiconductor device theory. SIAM J Math Anal, 1974, 5:597-612 |
[28] | Matsumura A, Nishida T. The initial value problem for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20:67-104 |
[29] | Markowich P A, Ringhofer C A, Schmeiser C. Semiconductor equations. Vienna:Springer-Verlag, 1990 |
[30] | Nirenberg L. On elliptic partial differential equations. Ann Scuola Norm Sup Pisa Cl Sci, 1959, 13:115-162 |
[31] | Nonner W, Chen D P, Eisenberg B. Progress and prospects in permeation. J Gen Physiol, 1999, 113:773-782 |
[32] | Ogawa T, Shimizu S. The drift-diffusion system in two-dimensional critical Hardy space. J Funct Anal, 2008, 255:1107-1138 |
[33] | Park J H, Jerome J W. Qualitative properties of steady-state Poisson-Nernst-Planck systems:Mathematical study. SIAM J Appl Math, 1997, 57:609-630 |
[34] | Promislow K, Stockie J M. Adiabatic relaxation of convective-diffusive gas transport in a porous fuel cell electrode. SIAM J Appl Math, 2001, 62:180-205 |
[35] | Reubish D S, Emerling D E, DeFalco J, Steiger D, Victoria C L, Vincent F. Functional assessment of temperature-gated ion-channel activity using a real-time PCR machine. BioTechniques, 2009, 47:iii-ix. PMID:19852757 |
[36] | Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series. No 30. Princeton, NJ:Princeton University Press, 1970 |
[37] | Sohr H. The Navier-Stokes equations. Birkhäuser Advanced Texts:Basler Lehrbücher. Basel:Birkhäuser Verlag, 2001 |
[38] | Song Z L, Cao X L, Huang H X. Electroneutral models for a multidimensional dynamic Poisson-Nernst-Planck system. Phys Rev E, 2018, 98:032404 |
[39] | Schoch R B, Han J, Renaud P. Transport phenomena in nanofluidics. Rev Mod Phys, 2008, 80:839 |
[40] | Schuss Z, Nadler B, Eisenberg R S. Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. Phys Rev E, 2001, 64:036116 |
[41] | Wu Y S, Tan Z. Asymptotic behavior of the Stokes approximation equations for compressible flows in R3. Acta Mathematica Scientia, 2015, 35B(3):746-760 |
[42] | Zhang Y H, Wu G C. Global existence and asymptotic behavior for the 3D compressible non-isentropic Euler equations with damping. Acta Mathematica Scientia, 2014, 34B(2):424-434 |
[1] | Ruiying WEI, Yin LI, Zheng-an YAO. THE GLOBAL EXISTENCE AND A DECAY ESTIMATE OF SOLUTIONS TO THE PHAN-THEIN-TANNER MODEL [J]. Acta mathematica scientia,Series A, 2022, 42(3): 1058-1080. |
[2] | Zaiyun Zhang,Zhenhai Liu,Youjun Deng. Global Existence and General Decay for a Nonlinear Viscoelastic Equation with Time-Varying Delay and Velocity-Dependent Material Density [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1684-1704. |
[3] | Qing Chen. Optimal Time Decay Rate of the Highest Derivative of Solutions to the Compressible Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2021, 41(2): 345-356. |
[4] | Yonghui Zhou. Global Stability of the Nonmonotone Critical Traveling Waves for Reaction Diffusion Equations [J]. Acta mathematica scientia,Series A, 2020, 40(4): 983-992. |
[5] | ZHANG Dan-Dan. Pointwise Estimates for the Solution to the Multi-Dimensional Generalized BBM-Burgers Equation [J]. Acta mathematica scientia,Series A, 2014, 34(3): 473-486. |
|