Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (3): 1018-1034.doi: 10.1007/s10473-022-0312-8
• Articles • Previous Articles Next Articles
Elahe BOLOURCHIAN, Bijan Ahmadi KAKAVANDI
Received:
2020-08-28
Revised:
2021-02-21
Online:
2022-06-26
Published:
2022-06-24
Contact:
Bijan Ahmadi KAKAVANDI,E-mail:b_ahmadi@sbu.ac.ir
E-mail:b_ahmadi@sbu.ac.ir
CLC Number:
Elahe BOLOURCHIAN, Bijan Ahmadi KAKAVANDI. HE EXPONENTIAL OF QUASI BLOCK-TOEPLITZ MATRICES[J].Acta mathematica scientia,Series A, 2022, 42(3): 1018-1034.
[1] | Baker A. Matrix groups:An introduction to Lie group theory. London:Springer-Verlag, 2002 |
[2] | Barbarino G, Garoni C, Serra-Capizzano S. Block generalized locally Toeplitz sequences:theory and applications in the unidimensional case. Electronic Transactions on Numerical Analysis, 2020, 53:28-112 |
[3] | Barbarino G, Garoni C, Serra-Capizzano S. Block generalized locally Toeplitz sequences:theory and applications in the multidimensional case. Electronic Transactions on Numerical Analysis, 2020, 53:113-216 |
[4] | Bini D A, Dendievel S, Latouche G, Meini B. Computing the exponential of large block-triangular block-Toeplitz matrices encountered in fluid queues. Linear Algebra and its Applications, 2016, 502:387-419 |
[5] | Bini D A, Massei S, Meini B. On functions of quasi-Toeplitz matrices (Russian); translated from Matematicheskii Sbornik, 2017, 208(11):56-74 |
[6] | Bini D A, Massei S, Meini B. Semi-infinite quasi-Toeplitz matrices with applications to QBD stochastic processes. Mathematics of Computation, 2018, 87(314):2811-2830 |
[7] | Bini D A, Massei S, Robol L. Quasi-Toeplitz matrix arithmetic:a MATLAB toolbox. Numerical Algorithms, 2019, 81(2):741-769 |
[8] | Bini D A, Meini B. On the exponential of semi-infinite quasi Toeplitz matrices. Numerische Mathematik, 2019, 141(2):319-351 |
[9] | Bonsall F F, Duncan J. Complete Normed Algebras. New York:Springer-Verlag, 1973 |
[10] | Böttcher A, Grusky S M. Spectral properties of banded Toeplitz matrices. Philadelphia:Society for Industrial and Applied Mathematics (SIAM), 2005 |
[11] | Böttcher A, Silbermann B. Analysis of Toeplitz operators. Second Edition. Prepared jointly with Alexie Karlovich, Springer Monographs in Mathematics. Berlin:Springer-Verlag, 2006 |
[12] | Böttcher A, Silbermann B. Introduction to large truncated Toeplitz matrices. Universitext. New York:Springer-Verlag, 1999 |
[13] | Dehghan M. Fully implicit finite differences methods for two-dimensional diffusion with a non-local boundary condition. Journal of Computational and Applied Mathematics, 1999, 106(2):255-269 |
[14] | Dudgeon D E, Mersereau R M. Multidimensional Digital Signal Processing. 2nd edition. Prentice-Hall Signal Processing Series, 1995 |
[15] | Ehrhart T, Van der Mee C, Rodman L, Spitkovsky I. Factorization in weighted Wiener matrix algebra on linearly ordered Abelian groups. Integral Equations and Operator Theory, 2007, 58:65-86 |
[16] | Garoni C, Serra-Capizzano S. Block generalized locally Toeplitz sequences:the case of matrix functions and an engineering application. The Electronic Journal of Linear Algebra, 2019, 35:204-222 |
[17] | Garoni C, Serra-Capizzano S. Generalized Locally Toeplitz Sequences:Theory and Applications. Vol I. Cham:Springer, 2017 |
[18] | Garoni C, Serra-Capizzano S. Generalized Locally Toeplitz Sequences:Theory and Applications. Vol II. Cham:Springer, 2018 |
[19] | Gutiérrez-Gutiérrez J, Crespo P M, Böttcher A. Functions of the banded Hermitian block Toeplitz matrices in signal processing. Linear Algebra and its Applications, 2007, 422(2/3):788-807 |
[20] | Grenander U, Szegö G. Toeplitz forms and their applications. New York:Chelsea Publishing Co, 1984 |
[21] | Henrici P. Applied and Computational Complex Analysis. Vol 1. New York:John Wiley & Sons, 1974 |
[22] | Higham N J. Function of matrices:theory and computational. Philadelphia:Society for Industrial and Applied Mathematics (SIAM), 2008 |
[23] | Horn R A, Johnson C R. Matrix analysis. Cambridge:Cambridge University Press, 2013 |
[24] | Jeuris B, Vandebril R. The Kaähler mean of block-Toeplitz matrices with Toeplitz structured blocks. SIAM Journal on Matrix Analysis and Applications, 2016, 37(3):1151-1175 |
[25] | Khan M A, Timotin D. Algebras of block Toeplitz matrices with commuting entries. Linear and Multilinear Algebra, 2019. https://doi.org/10.1080/03081087.2019.1693955 |
[26] | Kreyszig E. Introductory functional analysis with applications. New York:John Wiley & Sons, Inc, 1989 |
[27] | Lee S T, Liu X, Sun H-W. Fast exponential time integration scheme for option pricing with jumps. Numerical Linear Algebra with Applications, 2012, 19(1):87-101 |
[28] | Lee S T, Pang H-K, Sun H-W. Shift-invert Arnoldi approximation to the Toeplitz matrix exponential. SIAM Journal on Scientific Computing, 2010, 32(2):774-792 |
[29] | Moler C, Van Loan C. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review, 2003, 45(1):3-49 |
[30] | Nielsen F, Bhatia R. Matrix information geometry. Heidelberg:Springer, 2013 |
[31] | Rudin W. Functional Analysis. Second Edition. New York:McGraw-Hill, Inc, 1991 |
[32] | Rudin W. Principles of Mathematical Analysis. Third Edition. New York:McGraw-Hill Book Co, 1976 |
|