Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (3): 825-846.doi: 10.1007/s10473-022-0301-y
• Articles • Previous Articles Next Articles
Jie JIANG
Received:
2020-11-01
Revised:
2021-03-23
Online:
2022-06-26
Published:
2022-06-24
Contact:
Jie JIANG,E-mail:jiang@apm.ac.cn
E-mail:jiang@apm.ac.cn
Supported by:
CLC Number:
Jie JIANG. BOUNDEDNESS AND EXPONENTIAL STABILIZATION IN A PARABOLIC-ELLIPTIC KELLER–SEGEL MODEL WITH SIGNAL-DEPENDENT MOTILITIES FOR LOCAL SENSING CHEMOTAXIS[J].Acta mathematica scientia,Series A, 2022, 42(3): 825-846.
[1] | Ahn J, Yoon C. Global well-posedness and stability of constant equilibria in parabolic-elliptic Chemotaxis systems without gradient sensing[J]. Nonlinearity, 2019, 32:1327-1351 |
[2] | Keller E F, Segel L A. Model for chemotaxis[J]. J Theoret Biol, 1971, 30:225-234 |
[3] | Fu X, Huang L H, Liu C, et al. Stripe formation in bacterial systems with density-suppressed motility[J]. Phys Rev Lett, 2012, 108:198102 |
[4] | Liu C L, Fu X F, Liu L Z, et al. Sequential establishment of stripe patterns in an expanding cell population[J]. Science, 2011, 334:238 |
[5] | Jin H Y, Kim Y J, Wang Z A. Boundedness, stabilization, and pattern formation driven by density-suppressed motility[J]. SIAM J Appl Math, 2018, 78:1632-1657 |
[6] | Lv W, Yuan Q. Global existence for a class of chemotaxis systems with signal-dependent motility, indirect signal production and generalized logistic source[J]. Z Angew Math Phys, 2020, 71:53 |
[7] | Wang J, Wang M. Boundedness in the higher-dimensional Keller-Segel model with signal-dependent motility and logistic growth[J]. J Math Phys, 2019, 60:011507 |
[8] | Yoon C, Kim Y J. Global existence and aggregation in a Keller-Segel model with Fokker-Planck diffusion[J]. Acta Appl Math, 2017, 149:101-123 |
[9] | Tao Y S, Winkler M. Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system[J]. Math Mod Meth Appl Sci, 2017, 27:1645-1683 |
[10] | Burger M, Laurençot Ph, Trescases A. Delayed blow-up for chemotaxis models with local sensing[J]. J London Math Soc, 2020, doi:10.1112/jlms.12420 |
[11] | Fujie K, Jiang J. Global existence for a kinetic model of pattern formation with density-suppressed motilities[J]. J Differential Equations, 2020, 269:5338-5778 |
[12] | Fujie K, Jiang J. Comparison methods for a Keller-Segel model of pattern formations with signal-dependent motilities[J]. Calc Var Partial Differential Equations, 2021, 60:92 |
[13] | Fujie K, Jiang J. Boundedness of Classical Solutions to a Degenerate Keller-Segel Type Model with Signal-dependent Motilities[J]. Acta Applicandae Mathematicae, 2021, 176:3 |
[14] | Li H, Jiang J. Global Existence of Weak Solutions to a Signal-dependent Keller-Segel Model for Local Sensing Chemotaxis[J]. Nonlinear Analysis:Real World Applications, 2021, 61:103338 |
[15] | Jin H Y, Wang Z A. Critical mass on the Keller-Segel system with signal-dependent motility[J]. Proc Amer Math Soc, 2020, 148:4855-4873 |
[16] | Jin H Y, Wang Z A. The Keller-Segel system with logistic growth and signal-dependent motility[J]. Discrete Contin Dyn Syst Ser B, 2021, 26:3023-3041 |
[17] | Jin H Y, Shi S J, Wang Z A. Boundedness and asymptotics of a reaction-diffusion system with density-dependent motility[J]. J Different Equ, 2020, 269:6758-6793 |
[18] | Ma M, Peng R, Wang Z. Stationary and non-stationary patterns of the density-suppressed motility model[J]. Physica D, 2020, 402:132259 |
[19] | Wang Z A. On the parabolic-elliptic Keller-Segel system with signal-dependent motilities:a paradigm for global boundedness[J]. Math Meth Appl Sci, 2021, 44:10881-10898 |
[20] | Zheng J, Wang Z. Global Boundedness of the Fully Parabolic Keller-Segel System with Signal-Dependent Motilities[J]. Acta Appl Math, 2021, 171:25 |
[21] | Nagai T, Senba T. Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis[J]. Adv Math Sci Appl, 1998, 8:145-156 |
[22] | Winkler M. Global solutions in a fully parabolic chemotaxis system with singular sensitivity[J]. Math Methods Appl Sci, 2011, 34:176-190 |
[23] | Stinner C, Winkler M. Global weak solutions in a chemotaxis system with large singular sensitivity[J]. Nonlinear Anal, 2011, 12:3727-3740 |
[24] | Winkler M, Yokota T. Stabilization in the logarithmic Keller-Segel system[J]. Nonlinear Anal Theor Meth Appl, 2018, 170:123-141 |
[25] | Fujie K, Senba T. Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity[J]. Nonlinearity, 2016, 29:2417-2450 |
[26] | Fujie K, Senba T. A sufficient condition of sensitivity functions for boundedness of solutions to a parabolic-parabolic chemotaxis system[J]. Nonlinearity, 2018, 31:1639-1672 |
[27] | Lankeit L, Winkler M. A generalized solution concept for the Keller-Segel system with logarithmic sensitivity:global solvability for large nonradial data[J]. NoDEA Nonlinear Differential Equations Appl, 2017, 24:49 |
[28] | Cao X. Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces[J]. Discrete Contin Dynam Syst Ser A, 2015, 35:1891-1904 |
[29] | Winkler M. Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model[J]. J Different Equ, 2010, 248:2889-2905 |
[30] | Alikakos N D. An application of the invariance principle to reaction-diffusion equations[J]. J Diff Equ, 1979, 33:201-225 |
[31] | Black T. Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity[J]. Discrete Contin Dyn Syst Ser S, 2020, 13:119-137 |
[32] | Winkler M. Can simultaneous density-determined enhancement of diffusion and cross-diffusion foster boundedness in Keller-Segel type systems involving signal-dependent motilities?[J]. Nonlinearity, 2020, 33:6590-6623 |
[1] | Shuyan QIU, Chunlai MU, Hong YI. BOUNDEDNESS AND ASYMPTOTIC STABILITY IN A PREDATOR-PREY CHEMOTAXIS SYSTEM WITH INDIRECT PURSUIT-EVASION DYNAMICS [J]. Acta mathematica scientia,Series A, 2022, 42(3): 1035-1057. |
[2] | Shaowen Yao,Wenjie Li,Zhibo Cheng. Nondegeneracy and Uniqueness of Periodic Solution for Third-Order Nonlinear Differential Equations [J]. Acta mathematica scientia,Series A, 2022, 42(2): 454-462. |
[3] | Zhe Jia,Zuodong Yang. Global Boundedness in a Chemotaxis-Haptotaxis Model with Nonlinear Diffusion and Signal Production [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1382-1395. |
[4] | Mingtao Chen,Wenhuo Su,Aibin Zang. Local well-Posedness for the Cauchy Problem of 2D Nonhomogeneous Incompressible and Non-Resistive MHD Equations with Vacuum [J]. Acta mathematica scientia,Series A, 2021, 41(1): 100-125. |
[5] | Feng Cheng. A Formal Analysis on the Large Ericksen Number Limit for the Incompressible Hyperbolic Ericksen-Leslie System of Liquid Crystals [J]. Acta mathematica scientia,Series A, 2021, 41(1): 126-141. |
[6] | Pengcheng Tang,Si Xu,Xuejun Zhang. Bergman Type Operators on Logarithmic Weight General Function Spaces in Cn [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1151-1162. |
[7] | Yue Wang,Hongmin Suo,Wei Wei. Classical Solutions for a Kind of New Kirchhoff-Type Problems Without Boundary Constraint [J]. Acta mathematica scientia,Series A, 2020, 40(4): 857-868. |
[8] | Yaoyao Han,Kai Zhao. Boundedness of Marcinkiewicz Integral and Its Commutator on Non-Homogeneous Metric Measure Spaces [J]. Acta mathematica scientia,Series A, 2020, 40(3): 597-610. |
[9] | Si Xu,Xuejun Zhang. Weighted Composition Operator on the Normal Weight Zygmund Space in the Unit Ball [J]. Acta mathematica scientia,Series A, 2020, 40(2): 288-303. |
[10] | Limin Zhang,Haiyan Xu,Chunhua Jin. Global Existence and Stability to a Prey-Taxis Model with Porous Medium Diffusion and Indirect Signal Production [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1381-1404. |
[11] | Yingjie Fu,Guijie Lan,Shuwen Zhang,Chunjin Wei. Dynamics of a Stochastic Predator-Prey Model with Pulse Input in a Polluted Environment [J]. Acta mathematica scientia,Series A, 2019, 39(3): 674-688. |
[12] | Yaxuan Zhang,Genqi Xu,Yanni Guo. Exponential Tracking Control for a Star-Shaped Network of Euler-Bernoulli Beams with Unknown Internal Disturbance [J]. Acta mathematica scientia,Series A, 2019, 39(3): 596-610. |
[13] | Xueping Luo, Mengtian Cui. Solvability of Directional Perturbed Generalized Mixed Variational Inequalities in Reflexive Banach Spaces [J]. Acta mathematica scientia,Series A, 2018, 38(6): 1144-1152. |
[14] | Yuting Guo,Qingli Shang,Xuejun Zhang. The Pointwise Multiplier on the Normal Weight Zygmund Space in the Unit Ball [J]. Acta mathematica scientia,Series A, 2018, 38(6): 1041-1048. |
[15] | Lin Jiaoyan. Uniform Estimates in Time for the Solution to a Fluid-Particle Model [J]. Acta mathematica scientia,Series A, 2018, 38(3): 565-570. |
|