Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (3): 975-1002.doi: 10.1007/s10473-022-0310-x
• Articles • Previous Articles Next Articles
Edcarlos D. SILVA, Jefferson S. SILVA
Received:
2020-09-09
Revised:
2020-10-14
Online:
2022-06-26
Published:
2022-06-24
Contact:
Edcarlos D. SILVA,E-mail:edcarlos@ufg.br
E-mail:edcarlos@ufg.br
Supported by:
CLC Number:
Edcarlos D. SILVA, Jefferson S. SILVA. QUASILINEAR EQUATIONS USING A LINKING STRUCTURE WITH CRITICAL NONLINEARITIES[J].Acta mathematica scientia,Series A, 2022, 42(3): 975-1002.
[1] | Alves C O, Wang Y, Shen Y. Soliton solutions for a class of quasilinear Schrödinger equations with a parameter. J Differential Equations, 2015, 259:318-343 |
[2] | Bartsch T, Wang Z Q. Existence and multiplicity results for some superlinear elliptic problems on RN. Comm Part Diff Eq, 1995, 20:1725-1741 |
[3] | de Bouard A, Hayashi N, Saut J C. Global existence of small solutions to a relativistic nonlinear Schrödinger equation. Comm Math Phys, 1997, 189:73-105 |
[4] | Brull L, Lange H. Solitary waves for quasilinear Schrödinger equations. Expo Math, 1986, 4:278-288 |
[5] | Chen X L, Sudan R N. Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma. Phys Rev Lett, 1993, 70:2082-2085 |
[6] | Colin M, Jeanjean L. Solutions for a quasilinear Schrödinger equation:a dual approach. Nonlinear Anal, 2004, 56:213-226 |
[7] | Del Pino M, Felmer P. Local Mountain Pass for semilinear elliptic problems in unbounded domains. Calc Var Partial Differential Equations, 1996, 4:121-137 |
[8] | Deng Y, Peng S, Yan S. Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth. J Differential Equations, 2015, 258:115-147 |
[9] | Furtado M F, Silva E D, Silva M L. Quasilinear Schrödinger equations with asymptotically linear nonlinearities. Adv Nonlinear Stud, 2014, 14:671-686 |
[10] | Furtado M F, Silva E D, Silva M L. Quasilinear elliptic problems under asymptotically linear conditions at infinity and at the origin. Z Angew Math Phys, 2015, 66:277-291 |
[11] | Hasse R W. A general method for the solution of nonlinear soliton and kink Schrödinger equations. Z Phys, 1980, 37:83-87 |
[12] | Kosevich A M, Ivanov B, Kovalev A S. Magnetic solitons. Phys Rep, 1990, 194:117-238 |
[13] | Kurihura S. Large-amplitude quasi-solitons in superfluid films. J Phys Soc Japan, 1981, 50:3263-3267 |
[14] | Landau L D, Lifschitz E M. Quantum Mechanics, Non-relativistic Theory. Institute of Physical Problems URSS, Academy of Sciences, 1958 |
[15] | Li Q, Wu X. Existence, multiplicity and concentration of solutions for generalized quasilinear Schrödinger equations with critical growth. J Math Phys, 2017, 58:041501 |
[16] | Lions P L. The concentration-compactness principle in the calculus of variations. The locally compact case. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1:109-145; 223-283 |
[17] | Litvak A G, Sergeev A M. One dimensional collapse of plasma waves. JETP Lett, 1978, 27:517-520 |
[18] | Liu J Q, Wang Z Q. Soliton solutions for quasilinear Schrödinger equations I. Proc Amer Math Soc, 2002, 131:441-448 |
[19] | Liu J Q. Wang Y Q, Wang Z Q. Soliton solutions for quasilinear Schrödinger equations II. J Differential Equations, 2003, 187:473-493 |
[20] | Liu J Q, Wang Y Q, Wang Z Q. Solutions for quasilinear Schrödinger equations via the Nehari method. Comm Partial Differential Equations, 2004, 29:879-901 |
[21] | Liu X, Liu J, Wang Z Q. Ground states for quasilinear Schrödinger equations with critical growth. Calc Var Partial Differential Equations, 2013, 46:641-669 |
[22] | Liu S, Zhou J. Standing waves for quasilinear Schrödinger equations with indefinite potentials. Journal of Differential Equations, 2018, 265:3970-3987 |
[23] | Makhankov V G, Fedyanin V K. Non-linear effects in quasi-one-dimensional models of condensed matter theory. Physics Reports, 1984, 104:1-86 |
[24] | Nakamura A. Damping and modification of exciton solitary waves. J Phys Soc Jpn, 1977, 42:1824-1835 |
[25] | do Ó J M, Severo U B. Quasilinear Schrödinger equations involving concave and convex nonlinearities. Commun Pure Appl Anal, 2009, 8:621-644 |
[26] | do Ó J M, Miyagaki O H, Soares S H. Soliton solutions for quasilinear Schrödinger equations with critical growth. J Differential Equations, 2010, 248:722-744 |
[27] | Poppenberg M, Schmitt K, Wang Z Q. On the existence of soliton solutions to quasilinear Schrödinger equations. Calc Var Partial Differential Equations, 2002, 14:329-344 |
[28] | Rabinowitz P. Minimax methods in critical point theory with applications to differential equations. CBMS Reg Conf Ser Math. Vol 65. Providence RI:Amer Math Soc, 1986 |
[29] | Rabinowitz P. On a class of nonlinear Schrödinger equations. Z Angew Math Phys, 1992, 43:270-291 |
[30] | Schechter M, Tintarev K. Pairs of critical points produced by linking subsets with applications to semilinear elliptic problems. Bull Soc Math Belg Ser B, 1992, 44:249-261 |
[31] | Schechter M. Linking methods in critical point theory. Boston, MA:Birkhäuser Boston, Inc, 1999 |
[32] | Schechter M. A variation of the mountain pass lemma and applications. J London Math Soc, 1991, 44(2):491-502 |
[33] | Silva E A B. Linking theorems and applications to semilinear elliptic problems at resonance. Nonlinear Anal, 1991, 16:455-477 |
[34] | Silva E A B, Vieira G F. Quasilinear asymptotically periodic Schrödinger equations with subcritical growth. Nonlinear Analysis, 2010, 72:2935-2949 |
[35] | Silva E A B, Vieira G F. Quasilinear asymptotically periodic Schrödinger equations with critical growth. Cal Var, 2010, 39:1-33 |
[36] | Silva E D, Silva J S. Quasilinear Schrödinger equations with nonlinearities interacting with high eigenvalues. J Math Phys, 2019, 60:081504 |
[37] | Silva E D, Silva J S. Multiplicity of solutions for critical quasilinear Schrödinger equations using a linking structure. Discrete Continuous Dynamical Systems-A, 2020, 40(9):5441-5470 |
[38] | Souto M A S, Soares S H M. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Commun Pure Appl Anal, 2013, 12(1):99-116 |
[39] | Willem M. Minimax Theorems. Basel, Berlin:Birkhäuser Boston, 1996 |
[1] | Qi LI, Chang-Lin XIANG. A FRACTIONAL CRITICAL PROBLEM WITH SHIFTING SUBCRITICAL PERTURBATION [J]. Acta mathematica scientia,Series A, 2022, 42(3): 1113-1124. |
[2] | Jinlan TAN, Yongyong LI, Chunlei TANG. THE EXISTENCE AND CONCENTRATION OF GROUND STATE SOLUTIONS FOR CHERN-SIMONS-SCHRÖDINGER SYSTEMS WITH A STEEP WELL POTENTIAL [J]. Acta mathematica scientia,Series A, 2022, 42(3): 1125-1140. |
[3] | XU Jia, DAI Guo-Wei. Infinitely Many Critical Points of Perturbed Symmetric Functionals Involving p-Laplacian [J]. Acta mathematica scientia,Series A, 2014, 34(6): 1532-1541. |
[4] | WU Yuan-Ze, HUANG Yi-Sheng, LIU Zeng. SIGN-CHANGING SOLUTIONS FOR SCHRÖDINGER EQUATIONS WITH VANISHING AND SIGN-CHANGING POTENTIALS [J]. Acta mathematica scientia,Series A, 2014, 34(3): 691-702. |
[5] | ZENG Xiao-Yu, WAN Jun-Xia. The Existence of |Solution for p-Laplace Equation Involving Resonant Term [J]. Acta mathematica scientia,Series A, 2014, 34(2): 227-233. |
[6] | DAI Guo-Wei, WANG Wen-Ting, FENG Li-Li. Nonsmooth Version of Dual Fountain Theorem and Its Application to a Differential Inclusion Problem [J]. Acta mathematica scientia,Series A, 2012, 32(3): 530-539. |
[7] | QIU Liang-Hua. On a Special Class of Prescribed Scalar Curvature Problems with Volume Element Preserving Deformations [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1317-1322. |
[8] | CHEN Shu-Hong, GUO Bo-Ling. The Existence of Global Solution of the Ginzburg-Landau Equations for Atomic Fermi Gases Near the BCS-BEC Crossover [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1359-1368. |
[9] | GE Bin, XUE Xiao-Ping, ZHOU Qing-Mei. Multiple Solutions for a p(x)}-Kirchhoff-type Equation with Nonsmooth Potential [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1431-1438. |
[10] | GAO Hong-Ya, ZHAO Li-Fang. On Generalized Beltrami System [J]. Acta mathematica scientia,Series A, 2010, 30(4): 953-958. |
[11] | Liu Xiangqing; Huang Yisheng; Deng Zhiying. The Eigenvalue Problems of Biharmonic Equations [J]. Acta mathematica scientia,Series A, 2009, 29(1): 57-69. |
[12] | Yao Qingliu. Positive Radial Solution to a Class of Nonlinear Dirichlet Boundary Value Problems [J]. Acta mathematica scientia,Series A, 2009, 29(1): 48-56. |
[13] | Zhang Guoqing; Liu Sanyang. On a Class of Elliptic Equation with Critical Potential and Indefinite Weights in R2 [J]. Acta mathematica scientia,Series A, 2008, 28(5): 929-936. |
[14] | Liu Xiangqing; Huang Yisheng. A Class of Quasilinear Elliptic Equations with Weights [J]. Acta mathematica scientia,Series A, 2007, 27(2): 277-287. |
[15] | HE Ji-Huan. Variational Iteration Approach to Schrodinger Equation [J]. Acta mathematica scientia,Series A, 2001, 21(zk): 577-583. |
|