[1] |
Cont R, Tankov P. Financial Modeling with Jump Processes. Financ Math Ser. Chapman and Hall/CRC:Boca Raton, 2004
|
[2] |
Devillanova G, Carlo Marano G. A free fractional viscous oscillator as a forced standard damped vibration. Fract Cal Appl Anal, 2016, 19(2):319-356
|
[3] |
Fiscella A, Valdinoci E. A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal, 2014, 94:156-170
|
[4] |
Molica Bisci G, Radulescu V, Servadei R. Variational methods for nonlocal fractional problems. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2016
|
[5] |
Majda A, Tabak E. A two-dimensional model for quasigeostrophic flow:comparison with the two-dimensional Euler flow. Physica D, 1996, 98(2/4):515-522
|
[6] |
Valdinoci E. From the long jump random walk to the fractional Laplacian. Bol Soc Esp Mat Apl, 2009, 49:33-44
|
[7] |
Vlahos L, Isliker H, Kominis Y, et al. Normal and a nomalous diffusion:atutorial//Order and Chaos. Patras University Press, 2008
|
[8] |
Nezza E D, Palatucci G, Valdinoci E, Hitchhikers guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136(5):521-573
|
[9] |
Servadei R, Valdinoci E. Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators. Rev Mat Iberoam, 2013, 29(3):1091-1126
|
[10] |
Servadei R, Valdinoci E. Variational methods for the non-local operators of elliptic type. Discrete Contin Dyn Syst, 2013, 33(5):2105-2137
|
[11] |
Brézis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Math, 1983, 36(4):437-477
|
[12] |
Ambrosetti A, Brezis H, Cerami G. Combined effects of concave and convex nonlinearities in some elliptic problems. J Funct Anal, 1994, 122(2):519-543
|
[13] |
Ambrosetti A, Garcia J, Peral I. Multiplicity reults for some nonlinear elliptic equations. J Func Anal, 1996, 137(1):219-242
|
[14] |
Bartsch T, Willem M. On an elliptic equation with concave and convex nonlinearities. Proc Amer Math Soc, 1995, 123(11):3555-3561
|
[15] |
Brown K J, Wu T. A fibering map approach to a semilinear elliptic boundary value problem. Elec J Differ Equ, 2007, 2007(69):1-9
|
[16] |
Garcia J, Peral I. Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans Amer Math Soc, 1991, 323(2):877-895
|
[17] |
Lin H. Positive solutions for nonhomogeneous elliptic equations involving critical Sobolev exponent. Nonlinear Anal, 2012, 75(4):2660-2671
|
[18] |
Lin H. Multiple positive solutions for semilinear elliptic systems. J Math Anal Appl, 2012, 391(1):107-118
|
[19] |
Wu T. On semilinear elliptic equations involving concave-convex nonlinearlities and sign-changing weight function. J Math Anal Appl, 2006, 318(1):253-270
|
[20] |
Wu T. Three positive solutions for Dirichlet problems involving critical Sobolev exponent and sign-changing weight. J Differ Equ, 2010, 249(7):1549-1578
|
[21] |
Fiscella A, Servadei R, Valdinoci E. Density properties for fractional Sobolev spaces. Ann Acad Sci Fenn Math, 2015, 40(1):235-253
|
[22] |
Ros-Oton X, Serra J. The Pohozaev identity for the fractional Laplacian. Arch Ration Mech Anal, 2014, 213(2):587-628
|
[23] |
Servadei R, Valdinoci E. A Brezis-Nirenberg result for non-local critical equations in low dimension. Comm Pure Appl Anal, 2013, 12(6):2445-2464
|
[24] |
Servadei R, Valdinoci E. The Brezis-Nirenberg result for the fractional Laplacian. Tran Amer Math Soc, 2015, 367(1):67-102
|
[25] |
Barriosa B, Colorado E, Servadeid R, et al. A critical fractional equation with concave-convex power nonlinearities. Ann I H Poincaré-AN, 2015, 32(4):875-900
|
[26] |
Barrios B, Colorado E, de Pablo A, et al. On some critical problems for the fractional Laplacian operator. J Differ Equ, 2012, 252(11):6133-6162
|
[27] |
Cabré X, Tan J. Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv Math, 2010, 224(5):2052-2093
|
[28] |
Tan J. The Brezis-Nirenberg type problem involving the square root of the Laplacian. Calc Var Partial Differ Equ, 2011, 36(1/2):21-41
|
[29] |
Silvestre L. Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm Pure Appl Math, 2007, 60(1):67-112
|
[30] |
Tarantello G. On nonhomogeneous elliptic equations invoving critical Sobolev exponent. Ann Inst H Poincaré Anal Non Lineairé, 1992, 9(3):281-304
|
[31] |
Ekeland I. On the variational principle. J Math Anal Appl, 1974, 47(2):324-353
|
[32] |
Bahri A, Li Y. On a min-max procedure for the existence of a positive solution for certain scalar field equations in RN. Rev Mat Iberoam, 1990, 6(1):1-15
|