数学物理学报 ›› 2009, Vol. 29 ›› Issue (4): 1093-1103.

• 论文 • 上一篇    下一篇

一类非线性波方程初边值问题解的爆破

  

  1. (郑州航空工业管理学院 数理系, 郑州 450015)
  • 收稿日期:2007-03-22 修回日期:2008-09-12 出版日期:2009-08-25 发布日期:2009-08-25
  • 基金资助:

    国家自然科学基金(10671182)、河南省高等学校青年骨干教师资助计划项目(2006110016)资助

Blow-up of |Solutions |of |an |Initial |Boundary |Value Problem for a Class of Nonlinear Wave Equation

  1. (Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015)
  • Received:2007-03-22 Revised:2008-09-12 Online:2009-08-25 Published:2009-08-25
  • Supported by:

    国家自然科学基金(10671182)、河南省高等学校青年骨干教师资助计划项目(2006110016)资助

摘要:

该文研究如下具有非线性阻尼项和非线性源项的波方程的初边值问题

utt -uxxt -uxx -(σ(u2x)ux)x+δ|ut|p-1ut=μ|u|q-1u, 0 < x <1, 0 ≤ t ≤ T,       (0.1)
u(0, t)=u(1, t)=0,  0 ≤ t ≤ T,                                                                         (0.2)

u(x, 0)=u0(x),  ut(x, 0)=u1(x), 0 ≤ x ≤1.                                                     (0.3)
文章将给出问题(0.1)--(0.3)的解在有限时刻爆破的充分条件, 同时将证明问题的局部广义解和局部古典解的存在性和唯一性.

关键词: 非线性波方程, 初边值问题, 局部解, 解的爆破

Abstract:

In this paper, the following initial boundary value problem  of the nonlinear wave equation involving the nonlinear damping term and the
nonlinear source term
utt -uxxt -uxx -(σ(u2x)ux)x+δ|ut|p-1ut=μ|u|q-1u, 0 < x <1, 0 ≤ t ≤ T,      
u(0, t)=u(1, t)=0,  0 ≤ t ≤ T,                                                                     

u(x, 0)=u0(x),  ut(x, 0)=u1(x), 0 ≤ x ≤1                                           
is discussed. This paper gives sufficient conditions of  blow-up of the solutions for the problem in finite time and proves the existence and uniqueness of the local generalized solution and classical solution of this problem.

Key words: Nonlinear wave equation, Initial boundary value problem, Local solution, Blow-up of solution

中图分类号: 

  • 35L35