[1] Chen M F. From Markov Chains to Non-Equilibrium Particle Systems. Singapore: World Scientific, 2004
[2] Boukas E K, Benzaouia A. Stability of discrete-time linear systems with Markovian jumping parameters and constrained control. IEEE Trans Automat Contr, 2002, 47: 516--521
[3] Yuan C G, Lygeros J. On the exponential stability of switching diffusion processes. IEEE Trans Automat Contr, 2005, 50: 1422--1426
[4] Mao X R. Stability of stochastic differential equations with Markovian switching. Stoch Proc Appl, 1999, 79: 45--67
[5] Yuan C G, Mao X R. Asymptotic stability in distribution of stochastic differential equations with Markovian switching. Stoch Proc Appl, 2003,
103: 277--291
[6] Xi F B. Stability for a random evolution equation with Gaussian perturbation. J Math Anal Appl, 2002, 272: 458--472
[7] Xi F B. Stability of a random diffusion with nonlinear drift. Stat Probab Letters, 2004, 68: 273--286
[8] Khas'minskii R Z, Zhu C, Yin G. Stability of regime-switching diffusions. Stoch Proc Appl, 2007, 117: 1037--1051
[9] Zhu C, Yin G. Asymtotic properties of hybrid diffusion systems. SIAM J Contr Optim, 2007, 46: 1155--1179
[10] Lund R B, Meyn S P, Tweedie R L. Computable exponential convergence rates for stochastically ordered Markov processes. Ann Appl Probab, 1996, 6: 218--237
[11] Meyn S P, Tweedie R L. Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes. Adv Appl Probab, 1993, 25: 518--548
[12] 严士健. 无穷粒子马尔可夫过程引论. 北京: 北京师范大学出版社, 1989
[13] Lund R B, Tweedie R L. Geometric convergence rates for stochastically ordered Markov chains. Math Oper Res, 1996, 20: 182--194
|