[1] Choe H J, Kim H. Strong solutions of the Navier-Stokes equations for isentropic compressible fluids. J Diff Eqs, 2003, 190: 504--523
[2] Choe H J, Kim H. Strong solutions of Navier-Stokes equations for nonhomogeneous incompressible fluids. Commun PDE, 2003, 28: 1183--1201
[3] Desjardins B. Regularity of weak solutions of the compressible isentropic Navier-Stokes equations. Comm PDE, 1997, 22: 977--1008
[4] Feireisl E, Petzeltov\'{a} H. Asymptotic compactness of global trajectories generated by the Navier-Stokes equations of compressible fluid. J Diff Equations, 2001, 173: 390--409
[5] Feireisl E, Petzeltov\'{a} H. On integrability up to the boundary of the weak solutions of the Navier-Stokes equations of compressible flow. Comm PDE, 2007, 25(3): 755--767
[6] Hoff D. Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data. J Diff Eqs, 1995, 120: 215--254
[7] Kobayashi T, Suzuki T. Weak solutions to the Navier-Stokes-Poisson equation. 2004, In preprint
[8] Lions P L. Mathematical Topics on Fluid Mechanics, 2. Oxford Lecture Ser Math Appl. Oxford: Clarendon Press, 1998, 10
[9] Liu T P, Yang T. Compressible Euler equations with vacuum. JDE, 1997, 140: 223--237
[10] Luo T, Xin Z, Yang T. Interface behavior of compressible Navier-Stokes equations with vacuum. SIAM J Math Anal, 2000, 31(6): 1175--1191
[11] Matusu-Necsov'a S, Okada M, Makoni T. Free boundary problems for the equation of spherically symmetric motion of viscous gas (II)--(III).
Japan J Indust Appl Math, 1995, 12: 195--203; 1997, 14: 199--213
[12] Okada M, Makoni T. Free boundary problems for the equation of spherically symmetric motion of viscous gas. Japan J Indust Appl Math, 1993, 10: 219--235
[13] Xin Z. Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density. Comm Pure Appl Math, 1998, 51: 229--240
[14] Yang T, Yao Z, Zhu C J. Compressible Navier-Stokes equations with density-dependent viscosity and vacuum. Comm PDE, 2001, 26(5/6): 965--981
|