数学物理学报 ›› 2009, Vol. 29 ›› Issue (4): 891-897.

• 论文 • 上一篇    下一篇

四元ZRM码的研究

  

  1. (苏州大学 数学科学学院, 江苏 苏州 215006)
  • 收稿日期:2007-11-05 修回日期:2008-12-18 出版日期:2009-08-25 发布日期:2009-08-25
  • 基金资助:

    国家自然科学基金(60603016)与 973 重大项目(2006CB 805900)资助

Study on Quaternary ZRM Codes

  1. (Department of Mathematics, Soochow University, Jiangsu Suzhou 215006)
  • Received:2007-11-05 Revised:2008-12-18 Online:2009-08-25 Published:2009-08-25
  • Supported by:

    国家自然科学基金(60603016)与 973 重大项目(2006CB 805900)资助

摘要:

为了讨论二元Reed-Muller码的 Z4 线性, 文献中先后介绍了两类 Z4 线性码, 分别记为ZRM}(r, m)与QRM}(r, m), 它们在Gray映射下的二元像记为ZRM}(r, m)与 QRM}(r, m) . 该文系统地讨论了这两类 Z4 线性码. 计算了ZRM}(r, m)与QRM}(r, m)的类型, 证明当3 ≤ r ≤m-1时, ZRM}(r, m)是二元线性码, 而QRM}(r, m)是非线性的; 并且, 由QRM}(r, m)张成的二元线性码恰是ZRM}(r, m). 最后, 对于非线性码QRM}(r, m), 讨论了它的秩与核.

关键词: Reed-Muller码, Gray映射, 二元像,  ZRM码,  QRM

Abstract:

In the literature two classes of Z4 linear codes were defined to discuss the Z4 linearity of binary Reed-Muller codes, they are denoted by ZRM(r, m) and QRM(r, m), and their binary images under the Gray map are denoted by ZRM(r, m) and QRM(r, m) respectively. In this correspondence, the types of ZRM}(r, m) and QRM(r, m) are computed respectively. When 3 ≤ r ≤ m-1, it is shown that the binary image ZRM(r, m) is linear while QRM(r, m) is nonlinear. Moreover, the linear code spanned by QRM(r, m) is proved to be ZRM(r, m). Finally, the rank and the kernel are determined for the nonlinear code QRM(r, m).

Key words: Reed-Muller code, Gray map, Binary image,  ZRM code,  QRM code

中图分类号: 

  • 11T71