[1] Constantin P, Foias C. Navier Stokes Equations. Chicago: The University of Chicago Press, 1988
[2] Robinson J C. Infinite Dimensional Dynamical Systems. Cambridge: Cambridge University Press, 2001
[3] Temam R. Navier-Stokes Equations, Theory and Numerical Analysis. Amsterdam: North Holland, 1979
[4] Temam R. Infinite Dimensional Dynamical Systems in Mechanics and Physics. New York: Springer-Verlag, 2000
[5] Ladyzhenskaya O. On the dynamical system generated by the Navier-Stokes equations. Z Nauch Semin LOMI, 1972, 27: 91--114
[6] Foias C, Temam R. Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations. J Math Pures Appl, 1979, 58: 334--368
[7] Abergel F. Attractors for a Navier-Stokes flow in an unbounded domain. Math Modeling Numer Anal, 1998, 23: 359--370
[8] Babin A V. The attractor of a Navier-Stokes system in an unbounded channel-like domain. J Dynam Differential Equations, 1992, 4: 555--584
[9] Rosa R. The global attractor for the 2D Navier-Stokes flow on some unbounded domains. Nonlinear Anal TMA, 1998, 32: 71--85
[10] Ball J M. Global attractors for damped semi-linear wave equations. Discrete Contin Dynam Systems, 2004, 10 (1/2): 31--52
[11] Ghidaglia J M. Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical system in the long time. J Differential Equations, 1988, 74: 369--390
[12] Ghidaglia J M. A note on the strong convergence towards attractors for damped forced KdV equations. J Differential Equations, 1994, 110 : 356--359
[13] Wang B X. An energy equation for the weakly damped driven nonlinear Schr"odinger equations and its applications. Physica D, 1995, 88: 167--175
[14] Chepyzhov V V , Vishik M I. Attractors of non-autonomous dynamical systems and their dimension. J Math Pures Appl, 1994, 73: 279--333
[15] Caraballo T, Langa J A, Robinson J C. Stability and random attractor for a reaction-diffusion equation with multiplicative noise. Discrete contin Dyn Syst, 2000, 6 (4): 875--892
[16] Caraballo T, Langa J A. On the upper semi-continuity of cocycle attractors for non-autonomous and random dynamical systems. Dynam Contin Discrete Impuls Systems A, 2003, 10: 491--514
[17] Kloeden P E. A Lyapunov function for pullback attractors of non-autonomous differential equations. Electron J Differ Equ Conf, 2000, 5: 91--102
[18] Kloeden P E, Schmalfuss B. Asymptotic behaviour of non-autonomous difference inclusions. Systems and Control Lett, 1998, 3: 275--280
[19] Hou Y, Li K. The uniform attractor for the 2D non-autonomous Navier-Stokes flow in some unbounded domains. Nonlinear Anal, 2004, 58(5/6): 609--630
[20] Lukaszewicz G, Sadowski W. Uniform attractor for 2D magneto-micropolar fluid flow in some unbounded domains. Z Angew Math Phys, 2004, 55: 1--11
[21] Moise I, Rosa R, Wang X. Attractors for noncompact non-autonomous systems via energy equations. Discrete Cont Dynam Syst, 2004, 10(1/2): 473--496
[22] Caraballo T, Lukaszewicz G, Real J. Pullback attractors for asymptotically compact nonautonomous dynamical systems. Nonlinear Anal, 2006, 64(3): 484--498
[23] Langa J A, Lukaszewicz G, Real J. Fintie fractal dimension of pullback attractor for non-autonomous 2D Navier-Stokes equations in some unbounded domains. Nonlinear Anal, 2007, 66: 735--749
[24] 丁夏畦, 吴永辉. 二维全平面上具线性阻尼Navier-Stokes方程组解的有限维行为. 应用数学学报, 1997, 20(4): 509--519
[25] 赵春山, 李开泰. 二维全空间上线性阻尼Navier-Stokes 方程的全局吸引子及其维数估计. 应用数学学报, 2000, 23(1): 90--98
|