[1]Ablowitz M J, Clarkson P A. Soliton, Nonlinear Evolution Equations and Inverse Scatting. New York: Cambridge University Press,1991
[2]Chen Y,et al. Auto-B"{a}cklund transformation and exact solutions for modified nonlinear dispersive mK(m,n) equations.Chaos, Solitons and Fractals, 2003, 17: 693--698
Chen Y, et al. Obtaining exact solutions for a family of "reaction-Duffing" equations with variable coefficients using a Backlund transformation.Theor Math Phys,2002,132: 970--975
[3]Lou S Y, Lu J Z.Special solutions from variable separation approach: Davey-Stewartson equation.J Phys A, 1996,29: 4209--4215
Lou S Y , Ruan H Y. Revisitation of the localized excitations of the 2+1 dimensional KdV equartion.J Phys A,2001,35: 305--316
[4]Matveev V A, Salle M A. Darboux Transformations and Solitons. Berlin,Heidelberg: Springer-Verlag, 1991
[5]Hu X B, Ma W X. Application of Hirota's bilinear formalism to the Toeplitz lattice-some special soliton-like solutions. Phys Lett A, 2002,293: 161--165
Lou S Y. Localized excitations of the (2+1)-dimensionalSine-Gordon system. J Phys A,2003,36: 3877--3892
[6]Parkes E J, Duffy B R. Travelling solitary wave solutions to a compound KdV-Burgers equation.Phys Lett A,1997,229: 217--220
[7]Fan E G. Extended tanh-function method and its applications to nonlinear equations.Phys Lett A, 2000,277: 212--218
[8]Gao Y T, Tian B. Generalized hyperbolic-function method with computerized symbolic computation to construct the solitonic solutions to nonlinear equations of mathematical physics.Comput Phys Comm, 2001,133: 158--164
[9]Yan Z Y. New explicit travelling wave solutions for two new integrable coupled nonlinear evolution equations.Phys Lett A, 2001,292: 100--106
[10]王明亮等.齐次平衡法原则及其应用. 兰州大学学报(自然科学版),1999,35(3): 8--15
Wang M L, Wan Y M, Zhou Y B. An auto-B"{a}cklund transformation and exact solutions to a generalized KdV equation with variable coefficients and their applications. Phys Lett A, 2002,303: 45--51
[11]Clarkson Peter A, Kruskal Martin D. New similarity reductions of the Boussinesq equation.J Math Phys, 1989,30: 2201--2213
[12]Tang X Y, Lin J. Conditional similarity reductions of Jimbo-Miwa equation via the classical Lie group approach.Commun Theor Phys, 2003,39: 6
Lou S Y, Tang X Y, Lin J.Similarity and conditionalsimilarity reductions of a (2+1)-dimensional KdV equation via a direct method. J Math Phys, 2000,41: 8286--8303
[13]Bountis T C,Papageorgiou V, Winternitz P. On the integrability of systems of nonlinear ordinary differential equations with superposition principles. J Math Phys,1986,27 1215--1224
Anderson R L, Harnad J, Winternitz P. Systems of ordinary differential equations with nonlinear superposition principles.Phys D,1981-82,4: 164--182
[14]Conte R, Musette M. Link between solitary waves and projective Riccati equations.J Phys A,1992,25: 5609--5623
[15]Yan Z Y,Generalized method and its application in the higher-order nonlinear Schrodinger equation in nonlinear optical fibres,Chaos,Solitons and Fractals,2003,16: 759--766
[16]Chen Y, Li B, General projective Riccati equation method and exact solutions for generalized KdV-type and KdV-Burgers-type equations with nonlinear terms of any order,Chaos,Solitons and Fractals, 2004,19:977--984
[17]Boiti Marco, Leon Jerame J P. Pempinelli, Flora Spectral transform for a two spatial dimension extension of the dispersive long wave equation. Inverse Problems, 1987,3: 371--387
[18]Paquin G,Winternitz P.Group theoretical analysis of dispersive long wave equations in two space dimensions.Phys D, 1990,46: 122--138
[19]Lou S Y.Symmetries and algebras of the integrable dispersive long wave equations in 2+1 dimensional spaces.J Phys A,1994,27: 3235--3243
[20]Wang M L,Zhou Y B,Li Z B.Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics.Phys Lett A, 1996,216:67--75
[21]Tian B,Gao Y T.New families of exact solutions to the integrable dispersive long wave equation in (2+1)-dimensional spaces.J Phys A,1996,29 2895--2903
[22]闫振亚,张鸿庆. 2+1维非线性色散长波方程的相似约化和解析解. 数学物理学报, 2001,21A(3): 384--390
[23]Lou S Y. Painleve test for the integrable dispersive long wave equation.Phys Lett A, 1993,176:96--100
[24]谢福鼎等.2+1维扩散长波方程的显式行波解.兰州大学学报,2002,37(2): 13--16
|