[1]Cooke K L, Yorke J A. Some equations modeling growth processes and gonorrhea epidemics. Math Biosci, 1973, 16(1): 75-101
[2]Greenberg J M, Hoppensteadt F. Asymptotic behavior of solutions to a popu lation equation. SIAM J PPL Math, 1975, 28(4): 662-674
[3]Herthcote H W, Van Driessche P. Two SIS epidemiologic models with del ays. J Math Biol, 2000, 40(1): 3-26
[4]Herthcote H W, Van Driessche P. An SIS epidemic model with variable p opulation size and a delay. J Math Biol, 1995, 34(2): 177-194
[5]Cooke K L.Stability analysis for a vector disease model. Rocky Mount J Math, 1979, 9(1): 31-42
[6]Beretta E,Capsso V, Rinldi F. Global stability results for a generalized Lotka Volterra system with distributed delays. J Math Biol, 1988, 26(4): 661-688
[7]Bruer F. Models for the spread of universally fatal diseases. J Math Biol, 1990, 28(3): 451-462
[8]Brauer F. Models for universally fatal diseases, II. Differential Equtions Models in Biology, Epidemiology and Ecology.Lecture Notes in Biomathematics 92, In: Busenberg S, Martelli M, eds. Berlin: SpringerVerlag;New York: Heidelberg, 1991. 57-69
[9]Hethcote H W, Stech H W, Van Driessche P. Periodicity and stability in epidemic models: a survey.Differential Equations and Applications in Ecology, Epi demics and Population Problems. In:Busenberg S N, Cooke K L, eds. New York: Academic Press, 1981. 65-82
[10]Goplsamy. Stability and Oscillations in Delay Differential Equatio ns of Population Dynamics. Dordrecht: Kluwer Academic Publishers,1992
[11]Yuan Sanling, Ma Zhien, Zhen Jin. Persistence and periodic solution on a nonautonomous SIS model with delays. Acta Mathematicae Applicatae Sinica, 200 3, 19(1):1-10
[12]Kuang Y. Delay Differential Equations with Applications in Population Dynamics. San Diego: Academic Press, 1993 |