[1]Robert P. Gilbert,First Order Elliptic Systems.London: Academic Press, 1983
[2]Brack F,Delanghe R,Sommen F.Clifford Analysis.Research Note in Mathematics 76.London:Pitman BookLtd, 1982
[3]徐振远.Clifford代数则函数的Riemann问题.科学通报, 1987,32(23): 476-477
[4]闻国椿. Clifford Annalysis and Elliptic System, Hyperbolic Systems of First Order Equations. Singapore: World Scientific 1991.230-237
[5]Le Huangson. Cousin problem for biregular functions with values in a Clifford algebra.Complex Variables, 1992, 20(4): 255-263
[6]黄沙. Clifford 分析中双曲调和函数的一种非线性边值问题.系统科学与数学, 1996,16(1):60-64
[7]黄沙. Clifford分析中双正则函数的一个非线性边值问题.中国科学,1996,16(1):60-64;中国科学(英文版),1996,39(3):1152-1164
[8]Huang Sha. Two boundary value problems for the regular functions with value in a Clifford algebra in the hyperball.Systems Science and Mathematical Science, 1996, 9(3):284-290
[9]黄沙. Clifford分析中广义双正则函数的非线性(线性)边值问题.数学学报,1996, 40(6):913-918
[10]黄沙. Clifford分析中奇异积分的PoincaréBertrand 公式. 数学学报, 1998,40(1):1-8
[11]乔玉英. 双正则函数的非线性带位移边值问题. 系统科学与数学, 1999,19(4): 484-489
[12]乔玉英,黄沙,赵红芳,陈振国. Clifford分析中一类非线性边值问题.数学物理学报,1996,16(3):284-290
[13]Hadamard J. Lecture's an Canchy's Problem in Linear Partial Differential Equation. New York:Springer, 1952
[14]路见可. 解析函数与奇异积分方程论文选集.武汉:武汉大学出版社,1998
[15]王传荣. 奇异积分∫_(Ω){f(τ)dτ}/(τ-t)^{n+1}的Hadamard 主值.数学年刊,1982,3(2):195-200
[16]Wang Xiaoqin. Singular integrals and analyticity theorems in several complex variables [Doctoral Dissertation]. Sweden: Uppssala University, 1990
[17]黄沙. 实Clifford分析中三类高阶奇异积分及其非线性微分积分方程. 数学进展,2000,29(3):253-268
[18]乔玉英, 黄沙. 实Clifford分析中六类拟Boncher Martinelli型高阶奇异积分的几个问题与其非线性微分积分方程. 系统科学与数学,2002,22(2):189-191 |