[1]Sun N Z. Mathematical Modeling of Groundwater Pollutio n.New York: SpringerVerlag, 1996
[2]Cheng K J. Bottomboundary condition for nonequilibrium transport of se diment. Journal of Geophysical. Research,1984,89(5): 8209-8214
[3]Xiong Y S, Onyx W W H. The analytical solution for sediment reaction and diffusion equation with gener alized initialboundary conditions. Appl Math and Mech, 2001, 22(4): 404-408
[4]David W A. Complex Variables with Applications,second edition. Reading, Mass: AddisonWesley Publishing Company, 1994
[5]Selim H M, Mansell R S. Analytical solution of the equation for transport of reactive solute. Water Re sour Res, 1976,12(2): 528-532
[6]Basak P, Murty V V. Groundwater quality improvement through nonlinear d iffusion. J Hydrol, 1981,53(1): 151-159
[7]Van Genuchten M Th. Analytical solution for chemical transport with sim ultaneous adsorption, zeroorder production and first order decay. J Hydro l, 1981,49(1): 213-233
[8]Mironenko E V, Pachepsky Ya A. Analytical solution for chemical transpo rt with nonequilibrium mass transfer, adsorption and biological transformation. J Hydrol, 1984,70 (1): 167-175
[9]Lindstrom F T, Boersma L. Analytical solutions for convectivedispersi ve transport in confined aquifers with different initial and boundary conditions. Water Resour Res, 1989, 25(1): 241-256
[10]Apmann R P, Rumer R R. Diffusion of sediment in developing flo w. J Hydraul Div Am Soc Civil Eng,1970,96: 109-123
[11]Lee D W, Lick W, Kang S W. The entrainment and deposition of line grained sediments in Lake Erie. J great Lakes Res, 1981,7(2): 224-233
[12]Hjelmfelt A T, Lenau C W. Nonequilibruim transport of suspended sediment. J Hydraul Div Am Soc Civil Eng, 1970, 96(HY7): 1567-1586
[13]Mei C C. Nonuniform diffusion of suspended sediment. J Hydraul Div Am Soc Civil Eng, 1969, 95(HY1): 581-584 |